Ir-Catalyzed Functionalization of C–H Bonds

Part of the Topics in Organometallic Chemistry book series (TOPORGAN, volume 34)


The ability to selectively functionalize C–H bonds holds enormous potential value in virtually every sphere of organic chemistry, from fuels to pharmaceuticals. Transition metal complexes have shown great promise in this context. Iridium provided the first examples of oxidative addition of C–H bonds; this addition is key to iridium’s leading role in alkane dehydrogenation and related reactions. Catalysts based on iridium have also proven highly effective for valuable borylations of C–H bonds and, to a lesser extent, for C–Si coupling. Compared with other platinum group metals, iridium chemistry has not been developed as extensively for the elaboration of C–C bonds from C–H bonds, but significant promise is indicated, particularly for coupling with simple hydrocarbons which lack functionalities that can act as directing groups.


Alkane metathesis Borylation C–H bond activation Dehydrogenation Hydroarylation Iridium catalyst Silylation 


  1. 1.
    Crabtree RH (2001) Dalton Trans 17 2437–2450Google Scholar
  2. 2.
    Labinger JA, Bercaw JE (2002) Nature 417:507–514Google Scholar
  3. 3.
    Ritleng V, Sirlin C, Pfeffer M (2002) Chem Rev 102:1731–1769Google Scholar
  4. 4.
    Goldman AS, Goldberg KI (2004) In: Goldberg KI, Goldman AS (eds) Activation and functionalization of C–H bonds, ACS symposium series, vol 885, pp 1–43Google Scholar
  5. 5.
    Colby DA, Bergman RG, Ellman JA (2010) Chem Rev 110:624–655Google Scholar
  6. 6.
    Balcells D, Clot E, Eisenstein O (2010) Chem Rev 110:749–823Google Scholar
  7. 7.
    Dobereiner GE, Crabtree RH (2010) Chem Rev 110:681–703Google Scholar
  8. 8.
    Bellina F, Rossi R (2010) Chem Rev 110:1082–1146Google Scholar
  9. 9.
    Gunay A, Theopold KH (2010) Chem Rev 110:1060–1081Google Scholar
  10. 10.
    Lyons TW, Sanford MS (2010) Chem Rev 110:1147–1169Google Scholar
  11. 11.
    Mkhalid IAI, Barnard JH, Marder TB, Murphy JM, Hartwig JF (2010) Chem Rev 110:890–931Google Scholar
  12. 12.
    Vaska L, DiLuzio JW (1962) J Am Chem Soc 84:679–680Google Scholar
  13. 13.
    Vaska L (1968) Accounts Chem Res 1:335–344Google Scholar
  14. 14.
    Janowicz AH, Bergman RG (1982) J Am Chem Soc 104:352–354Google Scholar
  15. 15.
    Crabtree RH, Mihelcic JM, Quirk JM (1979) J Am Chem Soc 101:7738–7739Google Scholar
  16. 16.
    Oro LA, Claver C (eds) (2009) Iridium complexes in organic synthesis. Wiley-VCH, WeinheimGoogle Scholar
  17. 17.
    Burk MJ, Crabtree RH, Parnell CP, Uriarte RJ (1984) Organometallics 3:816–817Google Scholar
  18. 18.
    Felkin H, Fillebeen-Khan T, Gault Y, Holmes-Smith R, Zakrzewski J (1984) Tetrahedron Lett 25:1279–1282Google Scholar
  19. 19.
    Baudry D, Ephritikhine M, Felkin H, Zakrzewski J (1984) Tetrahedron Lett 25:1283–1286Google Scholar
  20. 20.
    Felkin H, Fillebeen-Khan T, Holmes-Smith R, Lin Y (1985) Tetrahedron Lett 26:1999–2000Google Scholar
  21. 21.
    Burk MJ, Crabtree RH, McGrath DV (1985) J Chem Soc Chem Commun 1829–1830Google Scholar
  22. 22.
    Burk MJ, Crabtree RH (1987) J Am Chem Soc 109:8025–8032Google Scholar
  23. 23.
    Kunin AJ, Eisenberg R (1986) J Am Chem Soc 108:535–536Google Scholar
  24. 24.
    Kunin AJ, Eisenberg R (1988) Organometallics 7:2124–2129Google Scholar
  25. 25.
    Sakakura T, Tanaka M (1987) J Chem Soc Chem Commun 758–759Google Scholar
  26. 26.
    Sakakura T, Tanaka M (1987) Chem Lett 249–252Google Scholar
  27. 27.
    Sakakura T, Sodeyama T, Tanaka M (1989) New J Chem 13:737–745Google Scholar
  28. 28.
    Sakakura T, Sodeyama T, Tokunaga Y, Tanaka M (1988) Chem Lett 263–264Google Scholar
  29. 29.
    Nomura K, Saito Y (1988) J Chem Soc Chem Commun 161Google Scholar
  30. 30.
    Maguire JA, Boese WT, Goldman AS (1989) J Am Chem Soc 111:7088–7093Google Scholar
  31. 31.
    Maguire JA, Goldman AS (1991) J Am Chem Soc 113:6706–6708Google Scholar
  32. 32.
    Maguire JA, Petrillo A, Goldman AS (1992) J Am Chem Soc 114:9492–9498Google Scholar
  33. 33.
    Gupta M, Hagen C, Flesher RJ, Kaska WC, Jensen CM (1996) Chem Commun 2083–2084Google Scholar
  34. 34.
    Gupta M, Hagen C, Kaska WC, Cramer RE, Jensen CM (1997) J Am Chem Soc 119:840–841Google Scholar
  35. 35.
    Xu W, Rosini GP, Gupta M, Jensen CM, Kaska WC, Krogh-Jespersen K, Goldman AS (1997) Chem Commun 2273–2274Google Scholar
  36. 36.
    Liu F, Goldman AS (1999) Chem Commun 655–656Google Scholar
  37. 37.
    Liu F, Pak EB, Singh B, Jensen CM, Goldman ASJ (1999) J Am Chem Soc 121:4086–4087Google Scholar
  38. 38.
    Renkema KB, Kissin YV, Goldman AS (2003) J Am Chem Soc 125:7770–7771Google Scholar
  39. 39.
    Krogh-Jespersen K, Czerw M, Kanzelberger M, Goldman AS (2001) J Chem Inf Comput Sci 41:56–63Google Scholar
  40. 40.
    Kundu S, Choliy Y, Zhuo G, Ahuja R, Emge TJ, Warmuth R, Brookhart M, Krogh-Jespersen K, Goldman AS (2009) Organometallics 28:5432–5444Google Scholar
  41. 41.
    Biswas S, Ahuja R, Ray A, Choliy Y, Krogh-Jespersen K, Brookhart M, Goldman AS (2008) Abstracts of papers, 236th ACS national meeting, Philadelphia, PA, 17–21 August 2008, INOR-125Google Scholar
  42. 42.
    Haenel MW, Oevers S, Angermund K, Kaska WC, Fan H-J, Hall MB (2001) Angew Chem Intl Ed 40:3596–3600Google Scholar
  43. 43.
    Krogh-Jespersen K, Czerw M, Zhu K, Singh B, Kanzelberger M, Darji N, Achord PD, Renkema KB, Goldman AS (2002) J Am Chem Soc 124:10797–10809Google Scholar
  44. 44.
    Zhu K, Achord PD, Zhang X, Krogh-Jespersen K, Goldman AS (2004) J Am Chem Soc 126:13044–13053Google Scholar
  45. 45.
    Göttker-Schnetmann I, White P, Brookhart M (2004) J Am Chem Soc 126:1804–1811Google Scholar
  46. 46.
    Göttker-Schnetmann I, White PS, Brookhart M (2004) Organometallics 23:1766–1776Google Scholar
  47. 47.
    Göttker-Schnetmann I, Brookhart M (2004) J Am Chem Soc 126:9330–9338Google Scholar
  48. 48.
    Morales-Morales D, Redon R, Yung C, Jensen CM (2004) Inorg Chim Acta 357:2953–2956Google Scholar
  49. 49.
    Ray A, Zhu K, Kissin YV, Cherian AE, Coates GW, Goldman AS (2005) Chem Commun 3388–3390Google Scholar
  50. 50.
    Huang Z, Brookhart M, Goldman AS, Kundu S, Ray A, Scott SL, Vicente BC (2009) Adv Synth Catal 351:188–206Google Scholar
  51. 51.
    Dry ME (2002) Catalysis Today 71:227–241Google Scholar
  52. 52.
    Schulz H (1999) Appl Catal A 186:3–12Google Scholar
  53. 53.
    Burnett RL, Hughes TR (1973) J Catal 31:55–64Google Scholar
  54. 54.
    Vidal V, Theolier A, Thivolle-Cazat J, Basset J-M (1997) Science 276:99–102Google Scholar
  55. 55.
    Basset JM, Coperet C, Lefort L, Maunders BM, Maury O, Le Roux E, Saggio G, Soignier S, Soulivong D, Sunley GJ, Taoufik M, Thivolle-Cazat J (2005) J Am Chem Soc 127:8604–8605Google Scholar
  56. 56.
    Goldman AS, Roy AH, Huang Z, Ahuja R, Schinski W, Brookhart M (2006) Science 312:257–261Google Scholar
  57. 57.
    Biswas S, Choliy Y, Krogh-Jespersen K, Brookhart M, Goldman AS (2009) Abstract of papers, 238th ACS national meeting, Washington, DC, 16–20 August 2009, INOR-479Google Scholar
  58. 58.
    Huang Z, Rolfe E, Carson EC, Brookhart M, Goldman AS, El-Khalafy SH, MacArthur AHR (2010) Adv Synth Catal 352:125–135Google Scholar
  59. 59.
    Bailey BC, Schrock RR, Kundu S, Goldman AS, Huang Z, Brookhart M (2009) Organometallics 28:355–360Google Scholar
  60. 60.
    Ahuja R, Kundu S, Goldman AS, Brookhart M, Vicente BC, Scott SL (2008) Chem Commun 253–255Google Scholar
  61. 61.
    Luecke HF, Arndtsen BA, Burger P, Bergman RG (1996) J Am Chem Soc 118:2517–2518Google Scholar
  62. 62.
    Whited MT, Zhu Y, Timpa SD, Chen C-H, Foxman BM, Ozerov OV, Grubbs RH (2009) Organometallics 28:4560–4570Google Scholar
  63. 63.
    Gupta M, Kaska WC, Jensen CM (1997) Chem Commun 461–462Google Scholar
  64. 64.
    Zhang X, Fried A, Knapp S, Goldman AS (2003) Chem Commun 2060–2061Google Scholar
  65. 65.
    Gu X-Q, Chen W, Morales-Morales D, Jensen CM (2002) J Mol Cat A 189:119–124Google Scholar
  66. 66.
    Bernskoetter WH, Brookhart M (2008) Organometallics 27:2036–2045Google Scholar
  67. 67.
    Rablen PR, Hartwig JF, Nolan SP (1994) J Am Chem Soc 116:4121–4122Google Scholar
  68. 68.
    Rablen PR, Hartwig JF (1996) J Am Chem Soc 118:4648–4653Google Scholar
  69. 69.
    Waltz KM, He X, Muhoro C, Hartwig JF (1995) J Am Chem Soc 117:11357–11358Google Scholar
  70. 70.
    Waltz KM, Hartwig JF (1997) Science 277:211–213Google Scholar
  71. 71.
    Chen H, Hartwig JF (1999) Angew Chem Intl Ed 38:3391–3393Google Scholar
  72. 72.
    Waltz KM, Hartwig JF (2000) J Am Chem Soc 122:11358–11369Google Scholar
  73. 73.
    Iverson CN, Smith MR III (1999) J Am Chem Soc 121:7696–7697Google Scholar
  74. 74.
    Chen H, Schlecht S, Semple TC, Hartwig JF (2000) Science 287:1995–1997Google Scholar
  75. 75.
    Ishiyama T, Miyaura N (2006) Pure Appl Chem 78:1369–1375Google Scholar
  76. 76.
    Cho J-Y, Tse MK, Holmes D, Maleczka RE Jr, Smith MR III (2002) Science 295:305–308Google Scholar
  77. 77.
    Cho J-Y, Iverson CN, Smith MR III (2000) J Am Chem Soc 122:12868–12869Google Scholar
  78. 78.
    Ishiyama T, Takagi J, Ishida K, Miyaura N, Anastasi NR, Hartwig JF (2002) J Am Chem Soc 124:390–391Google Scholar
  79. 79.
    Ishiyama T, Takagi J, Hartwig JF, Miyaura N (2002) Angew Chem Intl Ed 41:3056–3058Google Scholar
  80. 80.
    Ishiyama T, Nobuta Y, Hartwig JF, Miyaura N (2003) Chem Commun 2924–2925Google Scholar
  81. 81.
    Boller TM, Murphy JM, Hapke M, Ishiyama T, Miyaura N, Hartwig JF (2005) J Am Chem Soc 127:14263–14278Google Scholar
  82. 82.
    Tamura H, Yamazaki H, Sato H, Sakaki S (2003) J Am Chem Soc 125:16114–16126Google Scholar
  83. 83.
    Takagi J, Sato K, Hartwig JF, Ishiyama T, Miyaura N (2002) Tetrahedron Lett 43:5649–5651Google Scholar
  84. 84.
    Ishiyama T, Takagi J, Yonekawa Y, Hartwig JF, Miyaura N (2003) Adv Synth Catal 345:1103–1106Google Scholar
  85. 85.
    Paul S, Chotana GA, Holmes D, Reichle RC, Maleczka RE Jr, Smith MR III (2006) J Am Chem Soc 128:15552–15553Google Scholar
  86. 86.
    Lo WF, Kaiser HM, Spannenberg A, Beller M, Tse MK (2006) Tetrahedron Lett 48:371–375Google Scholar
  87. 87.
    Mkhalid IAI, Conventry DN, Albesa-Jove D, Batsanov AS, Howard JAK, Perutz RN, Marder TB (2006) Angew Chem Intl Ed 45:489–491Google Scholar
  88. 88.
    Mertins K, Zapf A, Beller M (2004) J Mol Cat A 207:21–25Google Scholar
  89. 89.
    Chotana GA, Kallepalli VA, Maleczka RE Jr, Smith MR III (2008) Tetrahedron 64:6103–6114Google Scholar
  90. 90.
    Kallepalli VA, Shi F, Paul S, Onyeozili EN, Maleczka RE, Smith MR (2009) J Org Chem 74:9199–9201Google Scholar
  91. 91.
    Boebel TA, Hartwig JF (2008) J Am Chem Soc 130:7534–7535Google Scholar
  92. 92.
    Kawamorita S, Ohmiya H, Hara K, Fukuoka A, Sawamura M (2009) J Am Chem Soc 131:5058–5059Google Scholar
  93. 93.
    Gustavson WA, Epstein PS, Curtis MD (1982) Organometallics 1:884–885Google Scholar
  94. 94.
    Ishiyama T, Sato K, Nishio Y, Miyaura N (2003) Angew Chem Intl Ed 42:5346–5348Google Scholar
  95. 95.
    Saiki T, Nishio Y, Ishiyama T, Miyaura N (2006) Organometallics 25:6068–6073Google Scholar
  96. 96.
    Ishiyama T, Sato K, Nishio Y, Saiki T, Miyaura N (2005) Chem Commun 5065–5067Google Scholar
  97. 97.
    Lu B, Falck JR (2008) Angew Chem Intl Ed 47:7508–7510Google Scholar
  98. 98.
    Matsumoto T, Taube DJ, Periana RA, Taube H, Yoshida H (2000) J Am Chem Soc 122:7414–7415Google Scholar
  99. 99.
    Periana RA, Liu XY, Bhalla G (2002) Chem Commun 3000–3001Google Scholar
  100. 100.
    Oxgaard J, Muller RP, Goddard WA, Periana RA (2004) J Am Chem Soc 126:352–363Google Scholar
  101. 101.
    Oxgaard J, Periana RA, Goddard WA III (2004) J Am Chem Soc 126:11658–11665Google Scholar
  102. 102.
    Bhalla G, Liu XY, Wong-Foy A, Jones CJ, Periana RA (2004) In: Activation and functionalization of C-H bonds, ACS symposium series, vol 885, pp 105–115Google Scholar
  103. 103.
    Ghosh R, Zhang X, Achord P, Emge TJ, Krogh-Jespersen K, Goldman AS (2007) J Am Chem Soc 129:853–866Google Scholar
  104. 104.
    Bhalla G, Periana RA (2005) Angew Chem Intl Ed 44:1540–1543Google Scholar
  105. 105.
    Bhalla G, Oxgaard J, Goddard WA III, Periana RA (2005) Organometallics 24:3229–3232Google Scholar
  106. 106.
    Bhalla G, Oxgaard J, Goddard WA II, Periana RA (2005) Organometallics 24:5499–5502Google Scholar
  107. 107.
    Oxgaard J, Bhalla G, Periana RA, Goddard WA III (2006) Organometallics 25:1618–1625Google Scholar
  108. 108.
    Dorta R, Tognib A (2003) Chem Commun 760–761Google Scholar
  109. 109.
    Aufdenblatten R, Diezi S, Togni A (2000) Monatsh Chem 131:1345–1350Google Scholar
  110. 110.
    Zhang YJ, Skucas E, Krische MJ (2009) Org Lett 11:4248–4250Google Scholar
  111. 111.
    Tsuchikama K, Kasagawa M, Hashimoto Y-K, Endo K, Shibata T (2008) J Organomet Chem 693:3939–3942Google Scholar
  112. 112.
    Ueura K, Satoh T, Miura M (2007) J Org Chem 72:5362–5367Google Scholar
  113. 113.
    Fujita K-i, Nonogawa M, Yamaguchi R (2004) Chem Commun 1926–1927Google Scholar
  114. 114.
    Crabtree RH, Felkin H, Morris GE (1977) J Organomet Chem 141:205–215Google Scholar
  115. 115.
    Join B, Yamamoto T, Itami K (2009) Angew Chem Intl Ed 48:3644–3647, S3644/3641-S3644/3679Google Scholar
  116. 116.
    Lin Y, Ma D, Lu X (1987) Tetrahedron Lett 28:3249–3252Google Scholar
  117. 117.
    DeBoef B, Pastine SJ, Sames D (2004) J Am Chem Soc 126:6556–6557Google Scholar
  118. 118.
    Tsuchikama K, Kasagawa M, Endo K, Shibata T (2009) Org Lett 11:1821–1823Google Scholar
  119. 119.
    Kakiuchi F, Murai S (2002) Acc Chem Res 35:826–834Google Scholar
  120. 120.
    Matsuo Y, Iwashita A, Nakamura E (2006) Chem Lett 35:858–859Google Scholar
  121. 121.
    Whited MT, Grubbs RH (2008) Organometallics 27:5737–5740Google Scholar
  122. 122.
    Whited MT, Grubbs RH (2008) J Am Chem Soc 130:5874–5875Google Scholar
  123. 123.
    Romero PE, Whited MT, Grubbs RH (2008) Organometallics 27:3422–3429Google Scholar
  124. 124.
    Whited MT, Grubbs RH (2008) J Am Chem Soc 130:16476–16477Google Scholar
  125. 125.
    Whited MT, Grubbs RH (2009) Organometallics 28:161–166Google Scholar
  126. 126.
    Whited MT, Zhu Y, Timpa SD, Chen C-H, Foxman BM, Ozerov OV, Grubbs RH (2009) Organometallics 28:4560–4570Google Scholar
  127. 127.
    Whited MT, Grubbs RH (2009) Acc Chem Res 42:1607–1616Google Scholar
  128. 128.
    Rosini GP, Liu F, Krogh-Jespersen K, Goldman AS, Li C, Nolan SP (1998) J Am Chem Soc 120:9256–9266Google Scholar
  129. 129.
    Davies HML, Manning JR (2008) Nature 451:417–424Google Scholar
  130. 130.
    Suematsu H, Katsuki T (2009) J Am Chem Soc 131:14218–14219Google Scholar
  131. 131.
    Sun K, Sachwani R, Richert KJ, Driver TG (2009) Org Lett 11:3598–3601Google Scholar
  132. 132.
    Klei SR, Tilley TD, Bergman RG (2000) J Am Chem Soc 122:1816–1817Google Scholar
  133. 133.
    Kawamura K, Hartwig JF (2001) J Am Chem Soc 123:8422–8423Google Scholar
  134. 134.
    Mohammad HAY, Grimm JC, Eichele K, Mack H-G, Speiser B, Novak F, Quintanilla MG, Kaska WC, Mayer HA (2002) Organometallics 21:5775–5784Google Scholar
  135. 135.
    Krogh-Jespersen K, Czerw M, Summa N, Renkema KB, Achord PD, Goldman AS (2002) J Am Chem Soc 124:11404–11416Google Scholar
  136. 136.
    Webster CE, Hall MB (2003) Coord Chem Rev 238–239:315–331Google Scholar
  137. 137.
    Lam WH, Lam KC, Lin Z, Shimada S, Perutz RN, Marder TB (2004) Dalton Trans 1556–1562Google Scholar
  138. 138.
    Bernskoetter WH, Lobkovsky E, Chirik PJ (2005) Organometallics 24:4367–4373Google Scholar

Copyright information

© Springer Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Department of Chemistry and Chemical Biology, RutgersThe State University of New JerseyNew BrunswickUSA

Personalised recommendations