Advertisement

Derivational Complexity Is an Invariant Cost Model

  • Ugo Dal Lago
  • Simone Martini
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6324)

Abstract

We show that in the context of orthogonal term rewriting systems, derivational complexity is an invariant cost model, both in innermost and in outermost reduction. This has some interesting consequences for (asymptotic) complexity analysis, since many existing methodologies only guarantee bounded derivational complexity.

Keywords

Normal Form Turing Machine Cost Model Function Symbol Reduction Step 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Asperti, A., Coppola, P., Martini, S.: Optimalduplication is not elementary recursive. Inf. Comput. 193(1), 21–56 (2004)CrossRefzbMATHGoogle Scholar
  2. 2.
    Asperti, A., Mairson, H.G.: Parallel beta reduction is not elementary recursive. Inf. Comput. 170(1), 49–80 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Avanzini, M., Moser, G.: Complexity analysis by rewriting. In: Garrigue, J., Hermenegildo, M.V. (eds.) FLOPS 2008. LNCS, vol. 4989, pp. 130–146. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Barendregt, H., Eekelen, M., Glauert, J., Kennaway, J., Plasmeijer, M., Sleep, M.: Term graph rewriting. In: de Bakker, J., Nijman, A., Treleaven, P. (eds.) Parallel Languages on PARLE: Parallel Architectures and Languages Europe, vol. II, pp. 141–158. Springer, Heidelberg (1986)Google Scholar
  5. 5.
    Barendsen, E.: Term graph rewriting. In: Bezem, T.M., Klop, J.W., de Vrijer, R. (eds.) Term Rewriting Systems, ch. 13, pp. 712–743. Cambridge Univ. Press, Cambridge (2003)Google Scholar
  6. 6.
    Bonfante, G., Marion, J.-Y., Moyen, J.-Y.: On lexicographic termination ordering with space bound certifications. In: Bjørner, D., Broy, M., Zamulin, A.V. (eds.) PSI 2001. LNCS, vol. 2244, pp. 482–493. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  7. 7.
    Dal Lago, U., Martini, S.: On constructor rewriting systems and the lambda calculus. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5556, pp. 163–174. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Gurevich, Y.: On Kolmogorov machines and related issues. Bulletin of the European Association for Theoretical Computer Science 35, 71–82 (1988)Google Scholar
  9. 9.
    Hirokawa, N., Moser, G.: Automated complexity analysis based on the dependency pair method. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 364–379. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Jones, N.D.: Computability and Complexity from a Programming Perspective. MIT Press, Cambridge (1997)zbMATHGoogle Scholar
  11. 11.
    Knuth, D.: The Art of Computer Programming, vol. 1, pp. 462–463. Prentice Hall, Englewood Cliffs (1973)Google Scholar
  12. 12.
    Kolmogorov, A.N., Uspensky, V.: On the definition of algorithm. In: Uspekhi Mat. Naut., vol. 13(4), pp. 3–28 (1958)Google Scholar
  13. 13.
    Marion, J.-Y.: Analysing the implicit complexity of programs. Inform. and Comp. 183(1), 2–18 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Plump, D.: Graph-reducible term rewriting systems. Graph-Grammars and Their Application to Computer Science, pp. 622–636 (1990)Google Scholar
  15. 15.
    Schönage, A.: Storage modification machines. SIAM J. Comput. 9, 490–508 (1980)MathSciNetCrossRefGoogle Scholar
  16. 16.
    van Emde Boas, P.: Machine models and simulation. In: Handbook of Theoretical Computer Science. Algorithms and Complexity (A), vol. A, pp. 1–66. MIT Press, Cambridge (1990)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Ugo Dal Lago
    • 1
  • Simone Martini
    • 1
  1. 1.Dipartimento di Scienze dell’InformazioneUniversità di BolognaBolognaItaly

Personalised recommendations