Advertisement

Evolution of Analog Circuit Models of Ion Channels

  • Theodore W. Cornforth
  • Kyung-Joong Kim
  • Hod Lipson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6274)

Abstract

Analog circuits have long been used to model the electrical properties of biological neurons. For example, the classic Hodgkin-Huxley model represents ion channels embedded in a neuron’s cell membrane as a capacitor in parallel with batteries and resistors. However, to match the predictions of the model with their empirical electrophysiological data, Hodgkin and Huxley described the nonlinear resistors using a complex system of coupled differential equations, a celebrated feat that required exceptional creativity and insight. Here, we use evolutionary circuit design to emulate such leaps of human creativity and automatically construct equivalent circuits for neurons. Using only direct electrophysiological observations, the system evolved circuits out of basic electronic components that accurately simulate the behavior of sodium and potassium ion channels. This approach has the potential to serve both as a modeling tool to reverse engineer complex neurophysiological systems and as an assistant in the task of hand-designing neuromorphic circuits.

Keywords

Equivalent Circuit Analog Circuit Circuit Evolution Membrane Voltage Giant Axon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abbott, L.F.: Lapicque’s Introduction of the Integrate-and-Fire Model Neuron. Brain Res. Bull. 50, 303–304 (1999)CrossRefGoogle Scholar
  2. 2.
    Bongard, J., Lipson, H.: Automated Reverse Engineering of Nonlinear Dynamical Systems. PNAS 104, 9943–9948 (2007)CrossRefzbMATHGoogle Scholar
  3. 3.
    Das, A., Vemuri, R.: A Graph Grammar Based Approach to Automated Multi-Objective Analog Circuit Design. In: Proc. Design, Automation, Test Eur. Conf., pp. 700–705 (2009)Google Scholar
  4. 4.
    Douglas, R., Mahowald, M., Mead, C.: Neuromorphic Analog VLSI. Ann. Rev. Neurosci. 18, 255–281 (1995)CrossRefGoogle Scholar
  5. 5.
    Ellner, S.P., Guckenheimer, J.: Dynamic Models in Biology. Princeton University Press, Princeton (2006)zbMATHGoogle Scholar
  6. 6.
    Floreano, D., Mattiussi, C.: Bio-Inspired Artificial Intelligence: Theories, Methods, and Technologies. MIT Press, Cambridge (2008)Google Scholar
  7. 7.
    Gurkiewicz, M., Korngreen, A.: A Numerical Approach to Ion Channel Modeling Using Whole-cell Voltage-clamp Recordings and a Genetic Algorithm. PLOS Comp. Biol. 3, 1633–1647 (2007)CrossRefGoogle Scholar
  8. 8.
    Häusser, M.: The Hodgkin-Huxley Theory of the Action Potential. Nat. Neurosci. 3, 1165 (2000)CrossRefGoogle Scholar
  9. 9.
    Hawkes, A.G.: Stochastic Modeling of Single Ion Channels. In: Feng, J. (ed.) Computational Neuroscience: a Comprehensive Approach. CRC Press, London (2003)Google Scholar
  10. 10.
    Hille, B.: Ion Channels of Excitable Membranes. Sinauer Associates, Sunderland (2001)Google Scholar
  11. 11.
    Hines, M.L., Carnevale, N.T.: NEURON: a Tool for Neuroscientists. The Neuroscientist 7, 123–135 (2001)CrossRefGoogle Scholar
  12. 12.
    Hodgkin, A.L., Huxley, A.F.: Currents Carried by Sodium and Potassium Ions Through the Membrane of the Giant Axon of Loligo. J. Phys. 116, 449–472 (1952)Google Scholar
  13. 13.
    Hodgkin, A.L., Huxley, A.F.: The Components of Membrane Conductance in the Giant Axon of Loligo. J. Phys. 116, 473–496 (1952)Google Scholar
  14. 14.
    Hodgkin, A.L., Huxley, A.F.: The Dual Effect of Membrane Potential on Sodium Conductance in the Giant Axon of Loligo. J. Phys. 116, 497–506 (1952)Google Scholar
  15. 15.
    Hodgkin, A.L., Huxley, A.F.: A quantitative description of Membrane Current and its Application to Conduction and Excitation in Nerve. J. Phys. 117, 500–544 (1952)Google Scholar
  16. 16.
    Hodgkin, A.L., Huxley, A.F., Katz, B.: Measurement of Current-Voltage Relations in the Membrane of the Giant Axon of Loligo. J. Phys. 116, 424–448 (1952)Google Scholar
  17. 17.
    Hoppensteadt, F.C., Peskin, C.S.: Modeling and Simulation in Medicine and the Life Sciences. Springer, New York (2002)CrossRefzbMATHGoogle Scholar
  18. 18.
    Kandel, E.R., Schwartz, J.H., Jessell, T.M.: Principles of Neural Science. McGraw-Hill, New York (2000)Google Scholar
  19. 19.
    Kim, K.-J., Wong, A., Lipson, H.: Automated synthesis of resilient and tamper-evident analog circuits without a single point of failure. Genet. Program. Evolvable Mach. 11, 35–59 (2010)CrossRefGoogle Scholar
  20. 20.
    King, R.D., Rowland, J., Oliver, S.G., Young, M., Aubrey, W., Byrne, E., Liakata, M., Markham, M., Pir, P., Soldatova, L.N., Sparkes, A., Whelan, K.E., Clare1, A.: The Automation of Science. Science 324, 85–89 (2009)CrossRefGoogle Scholar
  21. 21.
    Kohno, T., Aihara, K.: Bottom-Up Design of Class 2 Silicon Nerve Membrane. J. Int. Fuzzy Sys. 18, 465–475 (2007)Google Scholar
  22. 22.
    Koza, J.R., Bennett III, F.H., Andre, D., Keane, M.A., Dunlap, F.: Automated Synthesis of Analog Electrical Circuits by Means of Genetic Programming. IEEE. Trans. Evol. Comput. 1, 109–128 (1997)CrossRefGoogle Scholar
  23. 23.
    Lapicque, L.: Recherches quantitatives sur l’excitation électrique des nerfs traitée comme une polarisation. J. Physiol. Pathol. Gen. 9, 620–635 (1907)Google Scholar
  24. 24.
    Lindsay, R.K., Buchanan, B.G., Feigenbaum, E.A., Lederberg, J.: Applications of Artificial Intelligence for Organic Chemistry: The DENDRAL Project. McGraw-Hill, New York (1980)Google Scholar
  25. 25.
    Lockery, S.R., Wittenberg, G., Kristan, W.B., Cottrell, G.W.: Function of Identified Interneurons in the Leech Elucidated Using Neural Networks Trained by Back-Propagation. Nature 340, 468–471 (1989)CrossRefGoogle Scholar
  26. 26.
    Mattiussi, C., Floreano, D.: Analog Genetic Encoding for the Evolution of Circuits and Networks. IEEE Trans. Evol. Comp. 11, 596–607 (2007)CrossRefGoogle Scholar
  27. 27.
    Menon, V., Spruston, N., Kath, W.L.: A State-Mutating Genetic Algorithm to Design Ion-Channel Models. PNAS 106, 16829–16834 (2009)CrossRefGoogle Scholar
  28. 28.
    NGSpice Circuit Simulator, http://ngspice.sourceforge.net
  29. 29.
    Noble, D.: Computational Models of the Heart and Their Use in Assessing the Actions of Drugs. J. Pharm. Sci. 107, 107–117 (2008)CrossRefGoogle Scholar
  30. 30.
    Schmidt, M., Lipson, H.: Distilling Free-Form Natural Laws from Experimental Data. Science 324, 81–85 (2009)CrossRefGoogle Scholar
  31. 31.
    Sicard, G., Bouvier, G., Fristot, V., Lelah, A.: An Adaptive Bio-Inspired Analog Silicon Retina. In: Proc. 25th Eur. Solid-State Cir. Conf., pp. 306–309 (1999)Google Scholar
  32. 32.
    Simoni, M.F., Cymbalyuk, G.S., Sorensen, M.E., Calabrese, R.L., DeWeerth, S.P.: A Multiconductance Silicon Neuron with Biologically Matched Dynamics. IEEE Trans. Biom. Eng. 51, 342–354 (2004)CrossRefzbMATHGoogle Scholar
  33. 33.
    Smith, L.S.: Neuromorphic Systems: Past, Present and Future. Adv. Exp. Med. Biol. 657, 167–182 (2010)CrossRefGoogle Scholar
  34. 34.
    Stanley, K.O., Miikkulainen, R.: Evolving Neural Networks Through Augmenting Topologies. Evol. Comp. 10, 99–127 (2002)CrossRefGoogle Scholar
  35. 35.
    Torresen, J.: A Scalable Approach to Evolvable Hardware. Genet. Prog. Evol. Mach. 3, 259–282 (2002)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Theodore W. Cornforth
    • 1
  • Kyung-Joong Kim
    • 2
  • Hod Lipson
    • 3
  1. 1.Department of Biological Statistics and Computational BiologyCornell UniversityIthacaUSA
  2. 2.Department of Computer EngineeringSejong UniversitySeoulRepublic of Korea
  3. 3.Department of Mechanical and Aerospace EngineeringCornell UniversityIthacaUSA

Personalised recommendations