On the Indifferentiability of the Grøstl Hash Function

  • Elena Andreeva
  • Bart Mennink
  • Bart Preneel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6280)

Abstract

The notion of indifferentiability, introduced by Maurer et al., is an important criterion for the security of hash functions. Concretely, it ensures that a hash function has no structural design flaws and thus guarantees security against generic attacks up to the proven bounds. In this work we prove the indifferentiability of Grøstl, a second round SHA-3 hash function candidate. Grøstl combines characteristics of the wide-pipe and chop-Merkle-Damgård iterations and uses two distinct permutations P and Q internally. Under the assumption that P and Q are random l-bit permutations, where l is the iterated state size of Grøstl, we prove that the advantage of a distinguisher to differentiate Grøstl from a random oracle is upper bounded by O((Kq)4/2l), where the distinguisher makes at most q queries of length at most K blocks. This result implies that Grøstl behaves like a random oracle up to q = O(2n/2) queries, where n is the output size. Furthermore, we show that the output transformation ofGrøstl, as well as ‘Grøstail’ (the composition of the final compression function and the output transformation), are clearly differentiable from a random oracle. This rules out indifferentiability proofs which rely on the idealness of the final state transformation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andreeva, E., Neven, G., Preneel, B., Shrimpton, T.: Seven-property-preserving iterated hashing: ROX. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 130–146. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  2. 2.
    Bellare, M., Ristenpart, T.: Multi-property-preserving hash domain extension and the EMD Transform. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 299–314. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient protocols. In: ACM Conference on Computer and Communications Security, pp. 62–73. ACM, New York (1993)Google Scholar
  4. 4.
    Bertoni, G., Daemen, J., Peeters, M., van Assche, G.: On the indifferentiability of the sponge construction. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 181–197. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Sponge functions. In: ECRYPT Hash Workshop 2007 (2007)Google Scholar
  6. 6.
    Bhattacharyya, R., Mandal, A., Nandi, M.: Security analysis of the mode of JH hash function. In: beyer, I. (ed.) FSE 2010. LNCS, vol. 6147, pp. 168–191. Springer, Heidelberg (2010)Google Scholar
  7. 7.
    Biham, E., Dunkelman, O.: A framework for iterative hash functions – HAIFA. Cryptology ePrint Archive, Report 2007/278 (2007)Google Scholar
  8. 8.
    Bresson, E., Canteaut, A., Chevallier-Mames, B., Clavier, C., Fuhr, T., Gouget, A., Icart, T., Misarsky, J.-F., Naya-Plasencia, M., Paillier, P., Pornin, T., Reinhard, J.-R., Thuillet, C., Videau, M.: Indifferentiability with distinguishers: Why Shabal does not require ideal ciphers. Cryptology ePrint Archive, Report 2009/199 (2009)Google Scholar
  9. 9.
    Chang, D., Lee, S., Nandi, M., Yung, M.: Indifferentiable security analysis of popular hash functions with prefix-free padding. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 283–298. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Chang, D., Nandi, M.: Improved indifferentiability security analysis of chopMD hash function. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 429–443. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    Coron, J.-S., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-Damgård revisited: How to construct a hash function. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 430–448. Springer, Heidelberg (2005)Google Scholar
  12. 12.
    Damgård, I.: A design principle for hash functions. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 416–427. Springer, Heidelberg (1990)Google Scholar
  13. 13.
    Dodis, Y., Gennaro, R., Håstad, J., Krawczyk, H., Rabin, T.: Randomness extraction and key derivation using the CBC, cascade and HMAC modes. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 494–510. Springer, Heidelberg (2004)Google Scholar
  14. 14.
    Dodis, Y., Ristenpart, T., Shrimpton, T.: Salvaging Merkle-Damgård for practical applications. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 371–388. Springer, Heidelberg (2010)Google Scholar
  15. 15.
    Gauravaram, P., Knudsen, L., Matusiewicz, K., Mendel, F., Rechberger, C., Schläffer, M., Thomsen, S.: Grøstl – a SHA-3 candidate (2009)Google Scholar
  16. 16.
    Lucks, S.: A failure-friendly design principle for hash functions. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 474–494. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  17. 17.
    Maurer, U., Renner, R., Holenstein, C.: Indifferentiability, impossibility results on reductions, and applications to the random oracle methodology. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 21–39. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  18. 18.
    Merkle, R.: One way hash functions and DES. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 428–446. Springer, Heidelberg (1990)Google Scholar
  19. 19.
    Miyaguchi, S., Ohta, K., Iwata, M.: Confirmation that some hash functions are not collision free. In: Damgård, I.B. (ed.) EUROCRYPT 1990. LNCS, vol. 473, pp. 326–343. Springer, Heidelberg (1991)Google Scholar
  20. 20.
    National Institute for Standards and Technology. Announcing Request for Candidate Algorithm Nominations for a New Cryptographic Hash Algorithm (SHA3) Family (November 2007)Google Scholar
  21. 21.
    Preneel, B., Govaerts, R., Vandewalle, J.: Hash functions based on block ciphers: A synthetic approach. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 368–378. Springer, Heidelberg (1994)Google Scholar
  22. 22.
    Wang, X., Yin, Y., Yu, H.: Finding collisions in the full SHA-1. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005)Google Scholar
  23. 23.
    Wang, X., Yu, H.: How to break MD5 and other hash functions. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Elena Andreeva
    • 1
  • Bart Mennink
    • 1
  • Bart Preneel
    • 1
  1. 1.Dept. Electrical Engineering, ESAT/COSIC and IBBTKatholieke Universiteit LeuvenBelgium

Personalised recommendations