Solving Revocation with Efficient Update of Anonymous Credentials

  • Jan Camenisch
  • Markulf Kohlweiss
  • Claudio Soriente
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6280)

Abstract

Anonymous credential system promise efficient, ubiquitous access to digital services while preserving user privacy. However, their diffusion is impaired by the lack of efficient revocation techniques. Traditional credential revocation measures based on certificate revocation lists or online certification authorities do not provide privacy and cannot be used in privacy-sensitive contexts. Existing revocation techniques specifically geared towards anonymous credential systems are more involved – for the credential issuer, users, as wells as credential consumers – as users have to prove that their credential is still valid, e.g., not included in a revocation list.

We introduce a novel, non-interactive technique to update issuer-controlled attributes of anonymous credentials. Revocation is implemented by encoding the validity time of a credential into one of these attributes. With the proposed protocol, credential issuers can periodically update valid credentials off-line and publish a small per-credential update value on a public bulletin-board. Users can later download their values and re-validate their credentials to prove possession of a valid credential for the current time period. Our solution outperforms all prior solutions for credential revocation in terms of communication and computational costs for the users and credentials consumers and the issuer’s effort is comparable to the best prior proposals.

Keywords

Signature Scheme Discrete Logarithm Blind Signature Commitment Scheme Direct Anonymous Attestation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Windows cardspace (2010), http://www.microsoft.com/windows/products/winfamily/cardspace/ (accessed April 2010)
  2. 2.
    Au, M.H., Susilo, W., Mu, Y.: Constant-size dynamic k-TAA. In: De Prisco, R., Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 111–125. Springer, Heidelberg (2006)Google Scholar
  3. 3.
    Bangerter, E., Camenisch, J., Lysyanskaya, A.: A cryptographic framework for the controlled release of certified data. In: Christianson, B., Crispo, B., Malcolm, J.A., Roe, M. (eds.) Security Protocols 2004. LNCS, vol. 3957, pp. 20–42. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Belenkiy, M., Camenisch, J., Chase, M., Kohlweiss, M., Lysyanskaya, A., Shacham, H.: Randomizable proofs and delegatable anonymous credentials. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 108–125. Springer, Heidelberg (2009)Google Scholar
  5. 5.
    Belenkiy, M., Chase, M., Kohlweiss, M., Lysyanskaya, A.: P-signatures and noninteractive anonymous credentials. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 356–374. Springer, Heidelberg (2008)Google Scholar
  6. 6.
    Bichsel, P., Camenisch, J., Groß, T., Shoup, V.: Anonymous credentials on a standard Java Card. In: ACM Conference on Computer and Communications Security (2009) (to appear)Google Scholar
  7. 7.
    Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. K. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)Google Scholar
  8. 8.
    Boneh, D., Shacham, H.: Group signatures with verifier-local revocation. In: Atluri, V., Pfitzmann, B., McDaniel, P. (eds.) ACM CCS 2004, pp. 168–177. ACM, New York (2004)Google Scholar
  9. 9.
    Brands, S.: Rapid demonstration of linear relations connected by boolean operators. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 318–333. Springer, Heidelberg (1997)Google Scholar
  10. 10.
    Brands, S.: Rethinking Public Key Infrastructure and Digital Certificates — Building in Privacy. PhD thesis, Eindhoven Institute of Technology, Eindhoven, The Netherlands (1999)Google Scholar
  11. 11.
    Brands, S.: Rethinking Public Key Infrastructures and Digital Certificates. MIT Press, Cambridge (2000)Google Scholar
  12. 12.
    Brands, S., Demuynck, L., De Decker, B.: A practical system for globally revoking the unlinkable pseudonyms of unknown users. In: Pieprzyk, J., Ghodosi, H., Dawson, E. (eds.) ACISP 2007. LNCS, vol. 4586, pp. 400–415. Springer, Heidelberg (2007)Google Scholar
  13. 13.
    Brands, S., Demuynck, L., De Decker, B.: A practical system for globally revoking the unlinkable pseudonyms of unknown users. In: Pieprzyk, J., Ghodosi, H., Dawson, E. (eds.) ACISP 2007. LNCS, vol. 4586, pp. 400–415. Springer, Heidelberg (2007)Google Scholar
  14. 14.
    Brickell, E., Camenisch, J., Chen, L.: Direct anonymous attestation. In: Proc. 11th ACM Conference on Computer and Communications Security, pp. 225–234. ACM Press, New York (2004)Google Scholar
  15. 15.
    Camenisch, J., Van Herreweghen, E.: Design and implementation of the idemix anonymous credential system. In: Proc. 9th ACM Conference on Computer and Communications Security, ACM Press, New York (2002)Google Scholar
  16. 16.
    Camenisch, J., Kohlweiss, M., Soriente, C.: An accumulator based on bilinear maps and efficient revocation for anonymous credentials. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 481–500. Springer, Heidelberg (2009)Google Scholar
  17. 17.
    Camenisch, J., Lysyanskaya, A.: Efficient non-transferable anonymous multi-show credential system with optional anonymity revocation. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (2001)Google Scholar
  18. 18.
    Camenisch, J., Lysyanskaya, A.: Dynamic accumulators and application to efficient revocation of anonymous credentials. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 61–76. Springer, Heidelberg (2002)Google Scholar
  19. 19.
    Camenisch, J., Lysyanskaya, A.: A signature scheme with efficient protocols. In: Cimato, S., Galdi, C., Persiano, G. (eds.) SCN 2002. LNCS, vol. 2576, pp. 268–289. Springer, Heidelberg (2003)Google Scholar
  20. 20.
    Camenisch, J., Lysyanskaya, A.: Signature schemes and anonymous credentials from bilinear maps. In: Franklin, M.K. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 56–72. Springer, Heidelberg (2004)Google Scholar
  21. 21.
    Camenisch, J., Michels, M.: Proving in zero-knowledge that a number n is the product of two safe primes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 107–122. Springer, Heidelberg (1999)Google Scholar
  22. 22.
    Camenisch, J., Stadler, M.: Efficient group signature schemes for large groups. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 410–424. Springer, Heidelberg (1997)Google Scholar
  23. 23.
    Camenisch, J.L.: Group Signature Schemes and Payment Systems Based on the Discrete Logarithm Problem. PhD thesis, ETH Zürich, Diss. ETH No. 12520. Hartung Gorre Verlag, Konstanz (1998)Google Scholar
  24. 24.
    Chaum, D.: Security without identification: Transaction systems to make big brother obsolete. Communications of the ACM 28(10), 1030–1044 (1985)Google Scholar
  25. 25.
    Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993)Google Scholar
  26. 26.
    Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R., Polk, W.: Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile. RFC 5280 (Proposed Standard) (May 2008)Google Scholar
  27. 27.
    Cramer, R., Damgård, I., MacKenzie, P.D.: Efficient zero-knowledge proofs of knowledge without intractability assumptions. In: Imai, H., Zheng, Y. (eds.) PKC 2000. LNCS, vol. 1751, pp. 354–372. Springer, Heidelberg (2000)Google Scholar
  28. 28.
    Cramer, R., Damgård, I., Schoenmakers, B.: Proofs of partial knowledge and simplified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994)Google Scholar
  29. 29.
    Lapon, J., Kohlweiss, M., De Decker, B., Naessens, V.: Performance analysis of accumulator-based revocation mechanisms. In: Proceedings of the 25th International Conference on Information Security (SEC 2010), Brisbane, AU. IFIP Conference Proceedings, p. 12. Springer, Heidelberg (2010)Google Scholar
  30. 30.
    Nakanishi, T., Fujii, H., Hira, Y., Funabiki, N.: Revocable group signature schemes with constant costs for signing and verifying. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 463–480. Springer, Heidelberg (2009)Google Scholar
  31. 31.
    Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140. Springer, Heidelberg (1992)Google Scholar
  32. 32.
    Schnorr, C.P.: Efficient signature generation for smart cards. Journal of Cryptology 4(3), 239–252 (1991)Google Scholar
  33. 33.
    Tsang, P.P., Au, M.H., Kapadia, A., Smith, S.W.: Blacklistable anonymous credentials: blocking misbehaving users without ttps. In: CCS 2007: Proceedings of the 14th ACM conference on Computer and communications security, pp. 72–81 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Jan Camenisch
    • 1
  • Markulf Kohlweiss
    • 2
  • Claudio Soriente
    • 3
  1. 1.IBM Research – ZurichSwitzerland
  2. 2.KU LeuvenBelgium
  3. 3.Universidad Politécnica de MadridSpain

Personalised recommendations