Guessing What’s on Your Mind: Using the N400 in Brain Computer Interfaces

  • Marijn van Vliet
  • Christian Mühl
  • Boris Reuderink
  • Mannes Poel
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6334)

Abstract

In this paper, a method is proposed for using a simple neurophysiological brain response, the N400 potential, to determine a deeper underlying brain state. The goal is to construct a BCI that can determine what the user is ’thinking about’, where ’thinking about’ is defined as being primed on. The results indicate that a subject can prime himself on a physical object by actively thinking about it during the experiment, as opposed to being shown explicit priming stimuli. Probe words are presented that elicit an N400 response which amplitude is modulated by the associative relatedness of the probe word to the object the user has primed himself on.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abootalebi, V., Moradi, M.H., Khalilzadeh, M.A.: A new approach for EEG feature extraction in P300-based lie detection. Computer methods and programs in biomedicine 94(1), 48–57 (2009)CrossRefGoogle Scholar
  2. 2.
    Bajo, M.T.: Semantic facilitation with pictures and words. Journal of Experimental Psychology: Learning, Memory, and Cognition 14(4), 579–589 (1988)Google Scholar
  3. 3.
    Croft, R.J., Barry, R.J.: EOG correction: a new aligned-artifact average solution. Electroencephalography and clinical neurophysiology 107(6), 395–401 (1998)CrossRefGoogle Scholar
  4. 4.
    Hagoort, P., Brown, C.M., Swaab, T.Y.: Lexical-semantic event-related potential effects in patients with left hemisphere lesions and aphasia, and patients with right hemisphere lesions without aphasia. Brain: a journal of neurology 119, 627–649 (1996)CrossRefGoogle Scholar
  5. 5.
    Kutas, M., Hillyard, S.A.: Reading Senseless Sentences: Brain Potentials Reflect Semantic Incongruity. Advancement of Science 207(4427), 203–205 (1980)CrossRefGoogle Scholar
  6. 6.
    Kutas, M., Hillyard, S.A.: Brain potentials during reading reflect word expectancy and semantic association. Nature 307, 161–163 (1984)CrossRefGoogle Scholar
  7. 7.
    Lau, E., et al.: A lexical basis for N400 context effects: evidence from MEG. Brain and language 111(3), 161–172 (2009)CrossRefGoogle Scholar
  8. 8.
    Lau, E.F., Phillips, C., Poeppel, D.: A cortical network for semantics (de)constructing the N400. Nature reviews. Neuroscience 9(12), 920–933 (2008)CrossRefGoogle Scholar
  9. 9.
    Meegan, D.V.: Neuroimaging techniques for memory detection: scientific, ethical, and legal issues. The American journal of bioethics: AJOB 8(1), 9–20 (2008)CrossRefGoogle Scholar
  10. 10.
    Orgs, G., Lange, K., Dombrowski, J.H., Heil, M.: Conceptual priming for environmental sounds and words: an ERP study. Brain and cognition 62(3), 267–272 (2006)CrossRefGoogle Scholar
  11. 11.
    Schlögl, A., et al.: A fully automated correction method of EOG artifacts in EEG recordings. Clinical neurophysiology: official journal of the International Federation of Clinical Neurophysiology 118(1), 98–104 (2007)CrossRefGoogle Scholar
  12. 12.
    Thompson-Schill, S.L., Kurtz, K.J., Gabrieli, J.D.E.: Effects of Semantic and Associative Relatedness on Automatic Priming. Journal of Memory and Language 38(4), 440–458 (1998)CrossRefGoogle Scholar
  13. 13.
    Vossen, P., Bloksma, L., Boersma, P.: The Dutch Wordnet (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Marijn van Vliet
    • 1
  • Christian Mühl
    • 1
  • Boris Reuderink
    • 1
  • Mannes Poel
    • 1
  1. 1.Human Media InteractionUniversity of TwenteEnschedeThe Netherlands

Personalised recommendations