5D Data Modelling: Full Integration of 2D/3D Space, Time and Scale Dimensions

  • Peter van Oosterom
  • Jantien Stoter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6292)

Abstract

This paper proposes an approach for data modelling in five dimensions. Apart from three dimensions for geometrical representation and a fourth dimension for time, we identify scale as fifth dimensional characteristic. Considering scale as an extra dimension of geographic information, fully integrated with the other dimensions, is new. Through a formal definition of geographic data in a conceptual 5D continuum, the data can be handled by one integrated approach assuring consistency across scale and time dimensions. Because the approach is new and challenging, we choose to step-wise studying several combinations of the five dimensions, ultimately resulting in the optimal 5D model. We also propose to apply mathematical theories on multidimensional modelling to well established principles of multidimensional modelling in the geo-information domain. The result is a conceptual full partition of the 3Dspace+time+scale space (i.e. no overlaps, no gaps) realised in a 5D data model implemented in a Database Management System.

Keywords

Multidimensional data modelling spatial DBMSs spatial data types spatio-temporal data models multi-scale data models 3D data models 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mandelbrot, B.: How Long Is the Coast of Britain? In: Statistical Self-Similarity and Fractional Dimension. Science. New Series, vol. 156(3775), pp. 636–638 (1967)Google Scholar
  2. 2.
    Fisher, P., Wood, J., Cheng: Where is Helvellyn? Fuzziness of multi-scale landscape morphometry. Transactions of the Institute of British Geographers 29, 106–128 (2004)CrossRefGoogle Scholar
  3. 3.
    Levin, S.A.: The problem of pattern and scale in ecology. Ecology 73, 1943–1967 (1992)CrossRefGoogle Scholar
  4. 4.
    Fisher, P.F., Wood, J.: What is a mountain? Or the Englishman who went up a Boolean geographical concept and realised it was fuzzy. Geography 8(3), 247–256 (1998)Google Scholar
  5. 5.
    Tate, N., Wood, J.: Fractals and scale dependencies in topography. In: Tate, N., Atkinson, P. (eds.) Modelling scale in geographical information science, pp. 35–51. Wiley, Chichester (2001)Google Scholar
  6. 6.
    Wood, J.: Scale-basedc haracterisationo of digital elevation models. In: Parker, D. (ed.) Innovations in GIS, vol. 3. Taylor & Francis, London (1996)Google Scholar
  7. 7.
    Wood, J.: Visualizing the structure and scale dependency of landscapes. In: Fisher, P., Unwin, D. (eds.) Virtual reality in geography, pp. 163–174. Taylor & Francis, London (2002)Google Scholar
  8. 8.
    Gray, J., Chaudhuri, S., Bosworth, A., Layman, A., Reichart, D., Venkatrao, M.: Data Cube: A Relational Aggregation Operator Generalizing Group-By, Cross-Tab, and Sub-Totals. In: Data Mining and Knowledge Discovery, vol. 1, pp. 29–53. Kluwer Academic Publishers, Dordrecht (1997)Google Scholar
  9. 9.
    Casali, A., Cicchetti, R., Lakhal, L.: The 3rd SIAM International Conference on Data Mining. Cube Lattices: a Framework for Multidimensional Data Mining, pp. 3004–3008 (2003)Google Scholar
  10. 10.
    Hamilton, A., Wang, H., Tanyer, A.M., Arayici, Y., Zhang, X., Song, Y.: From 3D to nD modelling. ITcon 10, 55–67 (2005)Google Scholar
  11. 11.
    Aouad, G., Lee, A., Wu, S.: Special issue on ‘From 3D to nD modelling. Journal of Information Technology in Construction (2005)Google Scholar
  12. 12.
    OGC, The OpenGIS Abstract Specification, Topic 1: Feature Geometry (ISO 19107 Spatial Schema), Version 5. Technical Report OpenGIS Project Document. Wayland, Mass., VS, Open Geospatial Consortium. N 01-101 (2001) Google Scholar
  13. 13.
    ISO, ISO/TC 211, ISO International standard 19107:2003, Geographic information - Spatial schema (2003)Google Scholar
  14. 14.
    Herring, J.: Implementation Specification for Geographic information - Simple feature access- Part 2: SQL option. OGC 06-104r3 (2006)Google Scholar
  15. 15.
    Egenhofer, M.J.: Spatial SQL: A Query and Presentation Language. Transactions on Knowledge and Data Engineering 6, 86–95 (1994)CrossRefGoogle Scholar
  16. 16.
    Arens, C.A., Stoter, J.E.: Modelling 3D spatial objects in a geo-DBMS using a 3D primitive. Computers&Geosciences, 165–177 (2005)Google Scholar
  17. 17.
    Brisson, E.: Representing geometric structures in d dimensions: Topology and order. In: Proceedings 5th Annual Symposium on Computational Geometry, pp. 218–227. ACM Press, New York (1989)Google Scholar
  18. 18.
    Pigot, S.: A topological model for a 3D spatial information system. In: Proceedings 5th International Symposium on Spatial Data Handling, pp. 344–359 (1992)Google Scholar
  19. 19.
    Thompson, R.J.: Towards a Rigorous Logic for Spatial Data Representation. PhD thesis. Delft University of Technology. Netherlands Geodetic Commission, p. 333 (2007)Google Scholar
  20. 20.
    Penninga, F.: 3D Topography A Simplicial Complex-based Solution in a Spatial DBMS, PhD thesis. TU Delft. The Netherlands, p. 204 (2008)Google Scholar
  21. 21.
    Raper, J., Livingstone, D.: Development of a geomorphological spatial model using object-oriented design. International Journal of Geographical Information Science 9, 359–383 (1995)CrossRefGoogle Scholar
  22. 22.
    Raper, J.: Multidimensional geographic information science. Taylor&Francis, London (2000)CrossRefGoogle Scholar
  23. 23.
    Ledoux, H., Gold, C.M.: Simultaneous storage of primal and dual three-dimensional subdivisions. Computers, Environment and Urban Systems 31, 393–408 (2007)CrossRefGoogle Scholar
  24. 24.
    Kazar, B.M., Kothuri, R., van Oosterom, P., Ravada, S.: On Valid and Invalid Three-Dimensional Geometries. In: Advances in 3D Geoinformation Systems, ch. 2, pp. 19–46. Springer, Heidelberg (2008)Google Scholar
  25. 25.
    Gröger, G., Kolbe, T., Nagel, C., Czerwinski, A.: Open Geospatial Consortium City Geographic Markup Language. In: CityGML Encoding Standard document version 1.0.0, OGC 08-007r1 (2008)Google Scholar
  26. 26.
    Gröger, G., Kolbe, T., Czerwinski, A.: OpenGIS CityGML Implementation-Specification. OGC 06-057 (2006)Google Scholar
  27. 27.
    OGC, CityGML specification document version 0.4.0, approved Best Practice Paper, OGC 07-062 (2009), http://www.opengeospatial.org/standards/bp
  28. 28.
    Kolbe, T.H.: Representing and exchanging 3D city models with CityGML. In: Lee, J., Zlatanova, S. (eds.) Proceedings of 3rd International Workshop on 3D Geo-information. Lecture notes Geoinformation&Cartography. Springer, Heidelberg (2008)Google Scholar
  29. 29.
    Tegtmeier, W., Zlatanova, S., van Oosterom, P.J.M., Hack, H.R.G.K.: Information management in civil engineering infrastructural development: with focus on geological and geotechnical information. In: Zhang, T.H., Kolbe, S.Z. (eds.) Proceedings of the ISPRS workshop, vol. XXXVIII-3-4/C3 Commission III/4, IV/8 and IV/5, Berlin (2009)Google Scholar
  30. 30.
    Isikdag, U.: Towards the implementation of building information models in geospatial context, PhD Thesis. 3D geo-information sciences. UK: The research institute for Built and Human Environment, University of Salford (2006)Google Scholar
  31. 31.
    Emgård, K.L., Zlatanova, S.: Design of an integrated 3D information model. In: Rumor, F., Coors, Z. (eds.) UDMS annual, pp. 143–156. Taylor & Francis Urban and regional data management, London (2008)Google Scholar
  32. 32.
    Oosterom, P.J.M., Ploeger, H., Stoter, J., Thompson, R., Lemmen, C.: Aspects of a 4D Cadastre: A First Exploration. In: FIG congress, Munich, Germany (2006)Google Scholar
  33. 33.
    Hornsby, K., Egenhofer, M.J.: Identity-based change: a foundation for spatio-temporal knowledge representation. International Journal of Geographical Information Science 14, 207–224 (2000)CrossRefGoogle Scholar
  34. 34.
    Peuquet, D.J.: Representations of Space and Time, p. 394. Guilford, New York (2002)Google Scholar
  35. 35.
    Raper, J.F., Livingstone, D.E.: Let’s get real: spatio-temporal identity and geographic entities. Transactions of the Institute of British Geographers 26, 237–242 (2001)CrossRefGoogle Scholar
  36. 36.
    Pelekis, N., Theodoulidis, B., Kopanakis, I., Theodoridis, Y.: Literature Review of Spatio-Temporal Database Models. The Knowledge Engineering Review journal 19, 235–274 (2004)Google Scholar
  37. 37.
    Worboys, M.F.: A unified model for spatial and temporal information: Spatial data: applications, concepts, techniques. Computer journal 37, 26–34 (1994)CrossRefGoogle Scholar
  38. 38.
    Jin, P., Yue, L., Gong, Y.: Research on a Unified Spatiotemporal Data Model. In: International Symposium on Spatial-temporal Modeling, Spatial Reasoning, Analysis, Data Mining and Data Fusion. ISPRS Press, China (2005)Google Scholar
  39. 39.
    Oosterom, Van, P.J.M., Maessen, B., Quak, C.W.: Generic query tool for spatio-temporal data. International Journal of Geographical Information Science 16, 713–748 (2002)CrossRefGoogle Scholar
  40. 40.
    ISO, ISO 14825:2004 Intelligent transport systems – Geographic Data Files (GDF) – Overall data specification. ISO Technical Commission on Intelligent transport systems, p. 590 (2004)Google Scholar
  41. 41.
    NCGIA, National Center for Geographic Information and Analysis, The research plan of the National Center for Geographic Information and Analysis. International Journal Geographical Information Systems 3, 117–136 (1989)Google Scholar
  42. 42.
    Buttenfield, B.P., Delotto, J.S.: Multiple representations. Scientific Report for the Specialist Meeting. National Center for Geographic Information and Analysis (NCGIA), p. 87. Technical paper 89–3 (1989)Google Scholar
  43. 43.
    Friis-Christensen, C.S., Jensen, A.: Object-relational management of multiply represented geographic entities. In: Proceedings of the 15th International Conference on Scientific and Statistical Database Management., Cambridge, MA, USA, July 9–11 (2003)Google Scholar
  44. 44.
    Parent, C., Spaccapietra, S., Zimányi, E.: Conceptual modelling for traditional and spatio-temporal applications. In: The MADS approach. Springer, Heidelberg (2006)Google Scholar
  45. 45.
    Bédard, Y., Larrivée, S., Proulx, M.-J., Nadeau, M.: Modelling geospatial databases with plug-ins for visual languages: a pragmatic approach and the impacts of 16 years of research and experimentations on Perceptory. In: Wang, S., Tanaka, K., Zhou, S., Ling, T.-W., Guan, J., Yang, D.-q., Grandi, F., Mangina, E.E., Song, I.-Y., Mayr, H.C. (eds.) ER Workshops 2004. LNCS, vol. 3289, pp. 17–30. Springer, Heidelberg (2004)Google Scholar
  46. 46.
    Jones, C.B., Kidner, D.B., Luo, L.Q., Bundy, G.L., Ware, J.M.: Database design for a multi-scale spatial information system. International Journal Geographic Information Science 10, 901–920 (1996)Google Scholar
  47. 47.
    Devogele, T., Trevisan, J., Raynal, L.: Building a multi-scale database with scale transition relationships. In: International Symposium on Spatial Data Handling, pp. 337–351 (1996)Google Scholar
  48. 48.
    Kilpelainen, T.: Multiple representation and generalisation of geo-databases for topographic maps. PhD thesis. Finnish Geodetic Institute (1997)Google Scholar
  49. 49.
    Stoter, J.E., van Oosterom, P.J.M., Quak, C.W., Visser, T., Bakker, N.: A semantic rich Multi-Scale Information Model Topography. Accepted for publication in International journal of geographical information science, IJGIS (2010)Google Scholar
  50. 50.
    van Oosterom, P., Schenkelaars, V.: The Development of an Interactive Multi-Scale GIS. International Journal of Geographical Information Systems 9, 489–507 (1995)CrossRefGoogle Scholar
  51. 51.
    van Oosterom, P.J.M.: Variable-scale Topological Data Structures Suitable for Progressive Data Transfer: The GAP-face Tree and GAP-edge Forest. Cartography and Geographic Information Science 32, 331–346 (2006)CrossRefGoogle Scholar
  52. 52.
    Meijers, M., van Oosterom, P.J.M., Quak, C.W.: A storage and transfer efficient data structure for variable. In: Bernard, Sester, P. (eds.) Advances in GIScience, pp. 345–367. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  53. 53.
    Vermeij, M., van Oosterom, P., Quak, W., Tijssen, T.: Storing and using scale-less topological data efficiently in a client-server DBMS environment. In: 7th International Conference on GeoComputation, Southampton (2003)Google Scholar
  54. 54.
    Croom, F.H.: Principles of Topology. Cengage Learning, 312 (2002)Google Scholar
  55. 55.
    Cromwell, P.R.: Polyhedra, p. 460. Cambridge University Press, Cambridge (1999)MATHGoogle Scholar
  56. 56.
    Coxeter, H.S.M.: Regular Polytopes, p. 321. Dover Publications, Mineola (1973)Google Scholar
  57. 57.
    Giblin, P.J.: Graphs, Surfaces and Homology: An Introduction to Algebraic Topology, 2nd edn. OGC 1999. Chapman and Hall, New York (1981)Google Scholar
  58. 58.
    OGC, OpenGIS Simple Features Specification For SQL, Revision 1.1 (1999), http://www.opengeospatial.org/standards/sfs

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Peter van Oosterom
    • 1
  • Jantien Stoter
    • 1
    • 2
  1. 1.OTB, GISt, TechncialUniversity of DelftThe Netherlands
  2. 2.Kadaster, ApeldoornThe Netherlands

Personalised recommendations