Advertisement

Robust Satisfaction of Temporal Logic over Real-Valued Signals

  • Alexandre Donzé
  • Oded Maler
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6246)

Abstract

We consider temporal logic formulae specifying constraints in continuous time and space on the behaviors of continuous and hybrid dynamical system admitting uncertain parameters. We present several variants of robustness measures that indicate how far a given trajectory stands, in space and time, from satisfying or violating a property. We present a method to compute these robustness measures as well as their sensitivity to the parameters of the system or parameters appearing in the formula. Combined with an appropriate strategy for exploring the parameter space, this technique can be used to guide simulation-based verification of complex nonlinear and hybrid systems against temporal properties. Our methodology can be used for other non-traditional applications of temporal logic such as characterizing subsets of the parameter space for which a system is guaranteed to satisfy a formula with a desired robustness degree.

Keywords

Space Robustness Temporal Logic Primary Signal Atomic Proposition Secondary Signal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science 126(2), 183–235 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Alur, R., Feder, T., Henzinger, T.A.: The benefits of relaxing punctuality. J. ACM 43(1), 116–146 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Antoniotti, M., Policriti, A., Ugel, N., Mishra, B.: Model building and model checking for biochemical processes. Cell Biochem. Biophys. 38(3), 271–286 (2003)CrossRefGoogle Scholar
  4. 4.
    Asarin, E., Caspi, P., Maler, O.: Timed regular expressions. J. ACM 49(2), 172–206 (2002)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Bensalem, S., Peled, D. (eds.): RV 2009. LNCS, vol. 5779. Springer, Heidelberg (2009)Google Scholar
  6. 6.
    Calzone, L., Fages, F., Soliman, S.: Biocham: an environment for modeling biological systems and formalizing experimental knowledge. Bioinformatics (Oxford, England) 22(14), 1805 (2006)CrossRefGoogle Scholar
  7. 7.
    Donzé, A., Krogh, B., Rajhans, A.: Parameter synthesis for hybrid systems with an application to simulink models. In: Majumdar, R., Tabuada, P. (eds.) HSCC 2009. LNCS, vol. 5469, pp. 165–179. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Donzé, A., Maler, O.: Systematic simulations using sensitivity analysis. In: Bemporad, A., Bicchi, A., Buttazzo, G. (eds.) HSCC 2007. LNCS, vol. 4416, pp. 174–189. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Eisner, C., Fisman, D., Havlicek, J., Lustig, Y., McIsaac, A., Van Campenhout, D.: Reasoning with temporal logic on truncated paths. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 27–39. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  10. 10.
    Fages, F., Rizk, A.: From model-checking to temporal logic constraint solving. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 319–334. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  11. 11.
    Fainekos, G.E., Pappas, G.J.: Robustness of temporal logic specifications for continuous-time signals. Theoretical Computer Science 410(42), 4262–4291 (2009)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Fainekos, G.E., Pappas, G.J.: A User Guide for TaLiRo V0.1 (2009)Google Scholar
  13. 13.
    Kesten, Y., Pnueli, A.: A compositional approach to CTL* verification. Theor. Comput. Sci. 331(2-3), 397–428 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Koymans, R.: Specifying real-time properties with metric temporal logic. Real-Time Syst. 2(4), 255–299 (1990)CrossRefGoogle Scholar
  15. 15.
    Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In: FORMATS/FTRTFT, pp. 152–166 (2004)Google Scholar
  16. 16.
    Maler, O., Nickovic, D., Pnueli, A.: From MITL to timed automata. In: Asarin, E., Bouyer, P. (eds.) FORMATS 2006. LNCS, vol. 4202, pp. 274–289. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  17. 17.
    Maler, O., Nickovic, D., Pnueli, A.: Checking temporal properties of discrete, timed and continuous behaviors. In: Pillars of Computer Science, pp. 475–505 (2008)Google Scholar
  18. 18.
    Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems: Specification. Springer, New York (1991)zbMATHGoogle Scholar
  19. 19.
    Nickovic, D., Maler, O.: AMT: A property-based monitoring tool for analog systems. In: Raskin, J.-F., Thiagarajan, P.S. (eds.) FORMATS 2007. LNCS, vol. 4763, pp. 304–319. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  20. 20.
    Pnueli, A.: The temporal logic of programs. In: Proc. 18th Annual Symposium on Foundations of Computer Science (FOCS), pp. 46–57 (1977)Google Scholar
  21. 21.
    Pnueli, A., Zaks, A.: On the merits of temporal testers. In: Grumberg, O., Veith, H. (eds.) 25 Years of Model Checking. LNCS, vol. 5000, pp. 172–195. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  22. 22.
    Rizk, A., Batt, G., Fages, F., Soliman, S.: On a continuous degree of satisfaction of temporal logic formulae with applications to systems biology. In: Heiner, M., Uhrmacher, A.M. (eds.) CMSB 2008. LNCS (LNBI), vol. 5307, pp. 251–268. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Alexandre Donzé
    • 1
  • Oded Maler
    • 1
  1. 1.CNRS-VerimagGièresFrance

Personalised recommendations