Computing Equilibria in Two-Player Timed Games via Turn-Based Finite Games

  • Patricia Bouyer
  • Romain Brenguier
  • Nicolas Markey
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6246)


We study two-player timed games where the objectives of the two players are not opposite. We focus on the standard notion of Nash equilibrium and propose a series of transformations that builds two finite turn-based games out of a timed game, with a precise correspondence between Nash equilibria in the original and in final games. This provides us with an algorithm to compute Nash equilibria in two-player timed games for large classes of properties.


Nash Equilibrium Preference Relation Stochastic Game Winning Strategy Time Game 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alur, R., Dill, D.L.: A theory of timed automata. TCS 126(2), 183–235 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. J. ACM 49, 672–713 (2002)MathSciNetGoogle Scholar
  3. 3.
    Asarin, E., Maler, O., Pnueli, A., Sifakis, J.: Controller synthesis for timed automata. In: SSSC’98, pp. 469–474. Elsevier, Amsterdam (1998)Google Scholar
  4. 4.
    Behrmann, G., Cougnard, A., David, A., Fleury, E., Larsen, K.G., Lime, D.: UPPAAL-Tiga: Time for playing games! In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 121–125. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Bouyer, P., Brenguier, R., Markey, N.: Computing equilibria in two-player timed games via turn-based finite games. Research Report LSV-10-11, Lab. Spécification & Vérification, ENS Cachan, France (2010)Google Scholar
  6. 6.
    Bouyer, P., Brenguier, R., Markey, N.: Nash equilibria for reachability objectives in multi-player timed games. In: CONCUR’10. LNCS. Springer, Heidelberg (2010)Google Scholar
  7. 7.
    Brenguier, R.: Calcul des équilibres de Nash dans les jeux temporisés. Master’s thesis, ENS Cachan (2009)Google Scholar
  8. 8.
    Brihaye, T., Bruyère, V., De Pril, J.: Equilibria in quantitative reachability games. In: Ablayev, F., Mayr, E.W. (eds.) Computer Science – Theory and Applications. LNCS, vol. 6072, pp. 72–83. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Chatterjee, K., Henzinger, T.A., Jurdziński, M.: Games with secure equilibria. In: LICS’06, pp. 160–169. IEEE Comp. Soc. Press, Los Alamitos (2006)Google Scholar
  10. 10.
    Chatterjee, K., Majumdar, R., Jurdziński, M.: On Nash equilibria in stochastic games. In: Marcinkowski, J., Tarlecki, A. (eds.) CSL 2004. LNCS, vol. 3210, pp. 26–40. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
    de Alfaro, L., Faella, M., Henzinger, T.A., Majumdar, R., Stoelinga, M.: The element of surprise in timed games. In: Amadio, R.M., Lugiez, D. (eds.) CONCUR 2003. LNCS, vol. 2761, pp. 142–156. Springer, Heidelberg (2003)Google Scholar
  12. 12.
    Félegyházi, M., Hubaux, J.-P., Buttyán, L.: Nash equilibria of packet forwarding strategies in wireless ad hoc networks. IEEE Trans. Mobile Computing 5(5), 463–476 (2006)CrossRefGoogle Scholar
  13. 13.
    Henzinger, T.A.: Games in system design and verification. In: TARK’05, pp. 1–4. Nat. Univ., Singapore (2005)Google Scholar
  14. 14.
    Nash, J.F.: Equilibrium points in n-person games. Proc. Nat. Academy of Sciences of the USA 36(1), 48–49 (1950)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Paul, S., Simon, S.: Nash equilibrium in generalised Muller games. In: FSTTCS’09. LIPIcs, vol. 4, pp. 335–346. Leibniz-Zentrum für Informatik (2009)Google Scholar
  16. 16.
    Thomas, W.: Infinite games and verification. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 58–64. Springer, Heidelberg (2002) (invited tutorial)CrossRefGoogle Scholar
  17. 17.
    Ummels, M.: Rational behaviour and strategy construction in infinite multiplayer games. In: Arun-Kumar, S., Garg, N. (eds.) FSTTCS 2006. LNCS, vol. 4337, pp. 212–223. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  18. 18.
    Ummels, M.: The complexity of Nash equilibria in infinite multiplayer games. In: Amadio, R.M. (ed.) FoSSaCS 2008. LNCS, vol. 4962, pp. 20–34. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  19. 19.
    Ummels, M., Wojtczak, D.: The complexity of Nash equilibria in simple stochastic multiplayer games. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5556, pp. 297–308. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  20. 20.
    Ummels, M., Wojtczak, D.: Decision problems for Nash equilibria in stochastic games. In: Grädel, E., Kahle, R. (eds.) CSL 2009. LNCS, vol. 5771, pp. 515–529. Springer, Heidelberg (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Patricia Bouyer
    • 1
  • Romain Brenguier
    • 1
  • Nicolas Markey
    • 1
  1. 1.LSVCNRS & ENS CachanFrance

Personalised recommendations