Advertisement

From Mtl to Deterministic Timed Automata

  • Dejan Ničković
  • Nir Piterman
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6246)

Abstract

In this paper we propose a novel technique for constructing timed automata from properties expressed in the logic mtl, under bounded-variability assumptions. We handle full mtl and include all future operators. Our construction is based on separation of the continuous time monitoring of the input sequence and discrete predictions regarding the future. The separation of the continuous from the discrete allows us to determinize our automata in an exponential construction that does not increase the number of clocks. This leads to a doubly exponential construction from mtl to deterministic timed automata, compared with triply exponential using existing approaches.

We offer an alternative to the existing approach to linear real-time model checking, which has never been implemented. It further offers a unified framework for model checking, runtime monitoring, and synthesis, in an approach that can reuse tools, implementations, and insights from the discrete setting.

Keywords

Model Check Controller Synthesis Time Automaton Deterministic Automaton Clock Constraint 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alur, R.: Timed automata. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633, pp. 8–22. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  2. 2.
    Asarin, E., Caspi, P., Maler, O.: Timed regular expressions. JACM 49(2), 172–206 (2002)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Alur, R., Dill, D.: A theory of timed automata. TCS 126(2), 183–236 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Alur, R., Feder, T., Henzinger, T.A.: The benefits of relaxing punctuality. JACM 43(1), 116–146 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Alur, R., Henzinger, T.A.: Logics and models of real time: a survey. In: Huizing, C., de Bakker, J.W., Rozenberg, G., de Roever, W.-P. (eds.) REX 1991. LNCS, vol. 600, pp. 74–106. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  6. 6.
    Asarin, E., Maler, O., Pnueli, A., Sifakis, J.: Controller synthesis for timed automata. In: IFAC SSSC, pp. 469–474. Elsevier, Amsterdam (1998)Google Scholar
  7. 7.
    Baier, C., Bertrand, N., Bouyer, P., Brihaye, T.: When are Timed Automata Determinizable? In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5556, pp. 43–54. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Bouyer, P., Bozzelli, L., Chevalier, F.: Controller Synthesis for MTL Specifications. In: Baier, C., Hermanns, H. (eds.) CONCUR 2006. LNCS, vol. 4137, pp. 450–464. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Behrmann, G., Cougnard, A., David, A., Fleury, E., Larsen, K., Lime, D.: UPPAAL-Tiga: Time for playing games! In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 121–125. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Doyen, L., Geeraerts, G., Raskin, J.-F., Reichert, J.: Realizability of real-time logics. In: Ouaknine, J., Vaandrager, F.W. (eds.) FORMATS 2009. LNCS, vol. 5813, pp. 133–148. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  11. 11.
    Havelund, K., Rosu, G.: Efficient monitoring of safety properties. In: STTT (2004)Google Scholar
  12. 12.
    Henzinger, T.A.: It’s about time. In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466, pp. 439–454. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  13. 13.
    Henzinger, T.A., Nicollin, X., Sifakis, J., Yovine, S.: Symbolic model checking for real-time systems. I&C 111, 193–244 (1994)zbMATHMathSciNetGoogle Scholar
  14. 14.
    Koymans, R.: Specifying real-time properties with metric temporal logic. Real-time Systems 2(4), 255–299 (1990)CrossRefGoogle Scholar
  15. 15.
    Larsen, K.G., Petterson, P., Yi, W.: UPPAAL: Status & developments. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 456–459. Springer, Heidelberg (1997)Google Scholar
  16. 16.
    Maler, O., Nickovic, D., Pnueli, A.: Real time temporal logic: Past, present, future. In: Pettersson, P., Yi, W. (eds.) FORMATS 2005. LNCS, vol. 3829, pp. 2–16. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  17. 17.
    Maler, O., Nickovic, D., Pnueli, A.: From MITL to timed automata. In: Asarin, E., Bouyer, P. (eds.) FORMATS 2006. LNCS, vol. 4202, pp. 274–289. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  18. 18.
    Maler, O., Nickovic, D., Pnueli, A.: On synthesizing controllers from bounded-response properties. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 95–107. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  19. 19.
    Monniaux, D.: A quantifier elimination algorithm for linear real arithmetic. In: Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS (LNAI), vol. 5330, pp. 243–257. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  20. 20.
    Manna, Z., Pnueli, A.: Temporal Verification of Reactive Systems: Specification. Springer, Heidelberg (1991)Google Scholar
  21. 21.
    Maler, O., Pnueli, A., Sifakis, J.: On the synthesis of discrete controllers for timed systems. In: Mayr, E.W., Puech, C. (eds.) STACS 1995. LNCS, vol. 900, Springer, Heidelberg (1995)Google Scholar
  22. 22.
    Ouaknine, J., Worrell, J.: On the decidability of metric temporal logic. In: LICS, pp. 188–197 (2005)Google Scholar
  23. 23.
    Piterman, N.: From nondeterministic Büchi and Streett automata to deterministic parity automata. LMCS 3(3), 5 (2007)MathSciNetGoogle Scholar
  24. 24.
    Pnueli, A., Rosner, R.: On the Synthesis of a Reactive Module. In: POPL, pp. 179–190 (1989)Google Scholar
  25. 25.
    Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM Journal of R&D 3, 115–125 (1959)MathSciNetGoogle Scholar
  26. 26.
    Safra, S.: On the complexity of ω-automata. In: FOCS, pp. 319–327 (1988)Google Scholar
  27. 27.
    Vardi, M.Y., Wolper, P.: An Automata-theoretic Approach to Automatic Program Verification. In: LICS, pp. 322–331 (1986)Google Scholar
  28. 28.
    Wilke, T.: Specifying Timed State Sequences in Powerful Decidable Logics and Timed Automata. In: Langmaack, H., de Roever, W.-P., Vytopil, J. (eds.) FTRTFT 1994 and ProCoS 1994. LNCS, vol. 863, pp. 694–715. Springer, Heidelberg (1994)Google Scholar
  29. 29.
    Yovine, S.: Kronos: A verification tool for real-time systems. STTT 1(1-2), 123–133 (1997)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Dejan Ničković
    • 1
  • Nir Piterman
    • 2
  1. 1.ISTKlosterneuburgAustria
  2. 2.Imperial College LondonLondonUK

Personalised recommendations