Advertisement

CFD Parallel Simulation Using Getfem++ and Mumps

  • Michel Fournié
  • Nicolas Renon
  • Yves Renard
  • Daniel Ruiz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6272)

Abstract

We consider the finite element environment Getfem++, which is a C++ library of generic finite element functionalities and allows for parallel distributed data manipulation and assembly. For the solution of the large sparse linear systems arising from the finite element assembly, we consider the multifrontal massively parallel solver package Mumps, which implements a parallel distributed LU factorization of large sparse matrices. In this work, we present the integration of the Mumps package into Getfem++ that provides a complete and generic parallel distributed chain from the finite element discretization to the solution of the PDE problems. We consider the parallel simulation of the transition to turbulence of a flow around a circular cylinder using Navier Stokes equations, where the nonlinear term is semi-implicit and requires that some of the discretized differential operators be updated and with an assembly process at each time step. The preliminary parallel experiments using this new combination of Getfem++ and Mumps are presented.

Keywords

Circular Cylinder Extra Computation Global Vector Karman Vortex Street Master Processor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blackford, L.S., Choi, J., Cleary, A., D’Azevedo, E., Demmel, J., Dhillon, I., Dongarra, J., Hammarling, S., Henry, G., Petitet, A., Stanley, K., Walker, D., Whaley, R.C.: Scalapack users’ guide (1997)Google Scholar
  2. 2.
    Braza, M., Persillon, H.: Physical analysis of the transition to turbulence in the wake of a circular cylinder by three-dimensional navier-stokes simulation. J. Fluid Mech. 365, 23–88 (1998)CrossRefzbMATHGoogle Scholar
  3. 3.
    Brezzi, F., Fortin, M.: Mixed and Hybrid finite element methods. Springer, Heidelberg (1991)CrossRefzbMATHGoogle Scholar
  4. 4.
    Dongarra, J.J., Croz, J.D., Duff, I.S., Hammarling, S.: Algorithm 679. a set of level 3 basic linear algebra subprograms. ACM Transactions on Mathematical Software 16, 1–17 (1990)CrossRefzbMATHGoogle Scholar
  5. 5.
    Ern, A., Guermond, J.L.: Theory and Practice of Finite Elements. Applied Mathematical Series, vol. 159. Springer, Heidelberg (2004)zbMATHGoogle Scholar
  6. 6.
    Jin, G., Braza, M.: A non-reflecting outlet boundary condition for incompressible unsteady navier-stokes calculations. J. Comput. Phys. 107, 239–253 (1993)CrossRefzbMATHGoogle Scholar
  7. 7.
    Snir, M., Otto, S.W., Huss-Lederman, S., Walker, D.W., Dongarra, J.: Mpi: The complete reference (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Michel Fournié
    • 1
  • Nicolas Renon
    • 2
  • Yves Renard
    • 3
  • Daniel Ruiz
    • 4
  1. 1.Institut de Mathématiques de Toulouse, CNRS (UMR 5219)Université de ToulouseFrance
  2. 2.Centre de Calcul Inter Universitaire de Toulouse (CICT-CALMIP)France
  3. 3.Institut Camille Jordan, CNRS (UMR 5208), INSA LyonFrance
  4. 4.Institut de Recherche en Informatique de Toulouse, CNRS (UMR 5505)Université de ToulouseFrance

Personalised recommendations