Knowledge Discovery Using Bayesian Network Framework for Intelligent Telecommunication Network Management

  • Abul Bashar
  • Gerard Parr
  • Sally McClean
  • Bryan Scotney
  • Detlef Nauck
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6291)

Abstract

The ever-evolving nature of telecommunication networks has put enormous pressure on contemporary Network Management Systems (NMSs) to come up with improved functionalities for efficient monitoring, control and management. In such a context, the rapid deployments of Next Generation Networks (NGN) and their management requires intelligent, autonomic and resilient mechanisms to guarantee Quality of Service (QoS) to the end users and at the same time to maximize revenue for the service/network providers. We present a framework for evaluating a Bayesian Networks (BN) based Decision Support System (DSS) for assisting and improving the performance of a Simple Network Management Protocol (SNMP) based NMS. More specifically, we describe our methodology through a case study which implements the function of Call Admission Control (CAC) in a multi-class video conferencing service scenario. Simulation results are presented for a proof of concept, followed by a critical analysis of our proposed approach and its application.

Keywords

Next Generation Networks (NGN) Network Management Bayesian Networks (BN) Call Admission Control (CAC) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    ITU-T: General overview of NGN, ITU-T Recommendation Y.2001 (2004)Google Scholar
  2. 2.
    Pras, A., et al.: Key research challenges in network management. IEEE Communications Magazine, 104–110 (2007)Google Scholar
  3. 3.
    Alpaydin, E.: Introduction to Machine Learning. MIT Press, Cambridge (2004)Google Scholar
  4. 4.
    Harrington, D., Presuhn, R., Wijnen, B.: An architecture for describing SNMP management frameworks. RFC 3411, IETF (2002)Google Scholar
  5. 5.
    ITU-T: TMN Management Functions, ITU-T Recommendation M.3400 (2000)Google Scholar
  6. 6.
    Kulkarni, P.G., McClean, S.I., Parr, G.P., Black, M.M.: Deploying MIB data mining for proactive network management. In: 3rd Intl. IEEE Conference on Intelligent Systems, pp. 506–511 (2006)Google Scholar
  7. 7.
    Sohail, S., Khanum, A.: Simplifying network management with fuzzy logic. In: IEEE Intl. Conf. on Communications, pp. 195–201 (2008)Google Scholar
  8. 8.
    Hood, C.S., Ji, C.: Proactive network fault detection. IEEE Transactions on Reliability, 333–341 (1997)Google Scholar
  9. 9.
    Ding, J., Kramer, B., et al.: Predictive fault management in the dynamic environment of IP network. In: IEEE International Workshop on IP Operations and Management, pp. 233–239 (2004)Google Scholar
  10. 10.
    Ekaette, E.U., Far, B.H.: A framework for distributed fault management using intelligent software agents. In: IEEE Canadian Conference on Electrical and Computer Engineering, vol. 2, pp. 797–800 (2003)Google Scholar
  11. 11.
    Hui, T.C.K., Chen-Khong, T.: Adaptive provisioning of differentiated services networks based on reinforcement learning. IEEE Transactions on Systems, Man, and Cybernetics 33(4), 492–501 (2003)CrossRefGoogle Scholar
  12. 12.
    Bashar, A., Parr, G.P., McClean, S.I., Scotney, B.W., Nauck, D.: BARD: A novel application of Bayesian reasoning for proactive network management. In: 10th Annual Postgraduate Conference on Telecommunications, Networking and Broadcasting (PGNET 2009), pp. 161–166 (2009)Google Scholar
  13. 13.
    Bashar, A., et al.: Employing Bayesian belief networks for energy efficient network management. In: IEEE National Conference on Communications (NCC) 2010, pp. 1–5 (2010)Google Scholar
  14. 14.
    Qi, J., Wu, F., Li, L., Shu, H.: Artificial intelligence applications in the telecommunications industry. Expert Systems 24, 271–291 (2007)CrossRefGoogle Scholar
  15. 15.
    Heckerman, D.: A tutorial on learning with Bayesian Networks. In: Jordan, M. (ed.) Learning in Graphical Models. MIT Press, Cambridge (1999)Google Scholar
  16. 16.
    Spirtes, P., Glymour, C., Scheines, R.: Causation, Prediction, and Search, 2nd edn. MIT Press, Cambridge (2001)MATHGoogle Scholar
  17. 17.
    Steck, H.: Constrained-based structural learning in Bayesian networks using finite data sets. PhD Thesis, Institut für der Informatik der Technischen Universität München (2001)Google Scholar
  18. 18.
    Jensen, F.: Bayesian Networks and Decision Graphs, 2nd edn. Springer, Heidelberg (2007)MATHGoogle Scholar
  19. 19.
    Murphy, K.: Dynamic Bayesian networks (2002), http://people.cs.ubc.ca/murphyk/Papers/dbnchapter.pdf
  20. 20.
    Korb, K.B., Nicholson, A.E.: Bayesian Artificial Intelligence, 1st edn. CRC Press, Boca Raton (2003)Google Scholar
  21. 21.
    Wright, S.: Admission Control in Multi-Service IP Networks: A Tutorial. IEEE Communications Surveys & Tutorials, 72–86 (2007)Google Scholar
  22. 22.
    OPNET Modeler 16.0, http://www.opnet.com
  23. 23.
    Hugin Researcher 7.2, http://www.hugin.com
  24. 24.
    Cisco Systems: Network element polling with Cisco active network abstraction (2007), http://www.ciscosystems.com/
  25. 25.
    Nam, S.Y., et al.: Measurement-based admission control at edge routers. IEEE/ACM Transactions on Networking 16(2), 410–423 (2008)CrossRefGoogle Scholar
  26. 26.
    Nichols, K., et al.: Definition of the Differentiated Services Field (DS Field) in the IPv4 and IPv6 Headers. RFC 2474, IETF (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Abul Bashar
    • 1
  • Gerard Parr
    • 1
  • Sally McClean
    • 1
  • Bryan Scotney
    • 1
  • Detlef Nauck
    • 2
  1. 1.School of Computing and EngineeringUniversity of UlsterColeraineUK
  2. 2.Research and Technology, British TelecomIpswichUK

Personalised recommendations