PlayPhysics: An Emotional Games Learning Environment for Teaching Physics

  • Karla Muñoz
  • Paul Mc Kevitt
  • Tom Lunney
  • Julieta Noguez
  • Luis Neri
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6291)


To ensure learning, game-based learning environments must incorporate assessment mechanisms, e.g. Intelligent Tutoring Systems (ITSs). ITSs are focused on recognising and influencing the learner’s emotional or motivational states. This research focuses on designing and implementing an affective student model for intelligent gaming, which reasons about the learner’s emotional state from cognitive and motivational variables using observable behaviour. A Probabilistic Relational Models (PRMs) approach is employed to derive Dynamic Bayesian Networks (DBNs). The model uses the Control-Value theory of ‘achievement emotions’ as a basis. A preliminary test was conducted to recognise the students’ prospective-outcome emotions with results presented and discussed. PlayPhysics is an emotional games learning environment for teaching Physics. Once the affective student model proves effective it will be incorporated into PlayPhysics’ architecture. The design, evaluation and postevaluation of PlayPhysics are also discussed. Future work will focus on evaluating the affective student model with a larger population of students, and on providing affective feedback.


Affective Student Modelling Control-Value Theory Dynamic Bayesian Networks (DBNs) Game-based Learning Environments Intelligent Tutoring Systems PlayPhysics Probabilistic Relational Models (PRMs) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Oblinger, D.G.: The Next Generation of Educational Engagement. Interactive Media in Education (8), 1–18 (2004)Google Scholar
  2. 2.
    The ICE House Project Group: Teaching for Innovation, Creativity and Enterprise (2009),
  3. 3.
    Squire, K.: Video Games in Education. International Journal of Intelligent Simulations and Gaming 2(1), 49–62 (2003)Google Scholar
  4. 4.
    Conati, C., Maclaren, H.: Empirically Building and Evaluating a Probabilistic Model of User Affect. User Modeling and User-Adapted Interaction 19(3), 267–303 (2009)CrossRefGoogle Scholar
  5. 5.
    Rebolledo-Mendez, G., Du Boulay, B., Luckin, R.: Motivating the Learner: An Empirical Evaluation. In: Ikeda, M., Ashley, K., Chan, T.-W. (eds.) ITS 2006. LNCS, vol. 4053, pp. 545–554. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Pekrun, R., Frenzel, A.C., Goetz, T., Perry, R.P.: The Control Value Theory of Achievement Emotions. An integrative Approach to Emotions in Education. In: Shutz, P.A., Pekrun, R. (eds.) Emotion in Education, pp. 13–36. Elsevier, London (2007)CrossRefGoogle Scholar
  7. 7.
    Picard, R.W., Papert, S., Bender, W., Blumberg, B., Breazeal, C., Cavallo, D., Machover, T., Resnick, M., Roy, D., Strohecker, C.: Affective learning –A Manifesto. BT Technology Journal 22(4), 253–269 (2004)CrossRefGoogle Scholar
  8. 8.
    Sykes, J.: Affective Gaming: Advancing the Argument for Game-Based Learning. In: Pivec, M. (ed.) Affective and Emotional Aspects of Human-Computer Interaction, pp. 3–7. IOS Press, Netherlands (2006)Google Scholar
  9. 9.
    Sucar, L.E., Noguez, J.: Student Modeling. In: Pourret, O., Naïm, P., Marcot, B. (eds.) Bayesian Networks: A Practical Guide to Applications, pp. 173–185. J. Wiley & Sons, West Sussex (2008)Google Scholar
  10. 10.
    Du Boulay, B., Luckin, R.: Modelling Human Teaching Tactics and Strategies for Tutoring Systems. International Journal of Artificial Intelligence in Education 12, 235–256 (2001)Google Scholar
  11. 11.
    Höök, K.: User-Centred Design and Evaluation of Affective Interfaces. In: Ruttkoy, Z., Pelachaud, C. (eds.) From Brows to Trust: Evaluating Embodied Conversational Agents, pp. 127–160. Springer, Netherlands (2005)Google Scholar
  12. 12.
    Muñoz, K., Noguez, J., Mc Kevitt, P., Neri, L., Robledo-Rella, V., Lunney, T.: Adding features of educational games for teaching Physics. In: 39th IEEE International Conference Frontiers in Education, pp. M2E-1–M2E-6. IEEE Press, USA (2009)Google Scholar
  13. 13.
    Lepper, M.R., Woolverton, M., Mumme, D.L.: Motivational Techniques of Expert Human Tutors: Lessons for the Design of Computer Based Tutors. In: Lajoie, S.P., Derry, S.J. (eds.) Computers as Cognitive Tools, pp. 75–105. Lawrence Erlbaum Associates, Mahwah (1993)Google Scholar
  14. 14.
    D’Mello, S.K., Craig, S.D., Witherspoon, A., McDaniel, B.T., Graesser, A.C.: Automatic Detection of Learner’s Affect from Conversational Cues. User modelling and User-Adapted interaction 8(1-2), 45–80 (2008)Google Scholar
  15. 15.
    Jaques, P.A., Vicari, R.M.: A BDI Approach to Infer Student’s Emotions in an Intelligent Learning Environment. Journal of Computers and Education 49(2), 360–384 (2007)CrossRefGoogle Scholar
  16. 16.
    Ortony, A., Clore, G.L., Collins, A.: The Cognitive Structure of Emotions. Cambridge University Press, NY (1990)Google Scholar
  17. 17.
    Del Soldato, T., Du Boulay, B.: Implementation of motivational tactics in tutoring systems. Journal of Artificial Intelligence in Education 6(4), 337–378 (1995)Google Scholar
  18. 18.
    McQuiggan, S.W., Mott, B.W., Lester, J.C.: Modeling Self-efficacy in Intelligent Tutoring Systems: An inductive approach. User Modelling and User-Adapted Interaction 18, 81–123 (2008)CrossRefGoogle Scholar
  19. 19.
    Pekrun, R., Goetz, T., Perry, R.P.: Achievement Emotions Questionnaire (AEQ). User’s manual. Unpublished manuscript, University of Munich, Munich (2005)Google Scholar
  20. 20.
    Johnson, W.L., Rickel, J.W., Lester, J.C.: Animated pedagogical agents: face to face interaction in interactive learning environments. International Journal of Artificial Intelligence in Education 11(1), 47–78 (2000)Google Scholar
  21. 21.
    Stone, B.A., Lester, J.C.: Dynamically sequencing an animated pedagogical agent. In: Proceedings of the 13th National Conference on Artificial Intelligence, pp. 424–431. The MIT Press, Portland (1996)Google Scholar
  22. 22.
    Bates, J., Loyall, A., Reilly, W.: Integrating reactivity, goals and emotion in a broad agent. CiteSeerX (1992),
  23. 23.
    Lester, J.C., Voerman, J.L., Towns, S.G., Callaway, C.B.: Diectic believability: Coordinating gesture, locomotion and speech in life-like pedagogical agents. Applied Artificial Intelligence 13, 383–414 (1999)CrossRefGoogle Scholar
  24. 24.
    Cassell, J., Högni Vilhjálmsson, H., Bickmore, T.: BEAT: The Behaviour Expression Animation Toolkit. In: Pocock, L. (ed.) Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, pp. 477–486. ACM Press, Los Angeles (2001)Google Scholar
  25. 25.
    Streit, M., Batliner, A., Portele, T.: Cognitive-Based Interpretation of Emotions in a Multimodal Dialog System. In: Carbonell, J.G., Siekmann, J. (eds.) ADS 2004. LNCS (LNAI), vol. 3068, pp. 65–76. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  26. 26.
    Mateas, M.: An Oz-Centric Review of Interactive Drama and Believable Agents. Unpublished manuscript, School of Computer Science, Carnegie Mellon University (1997)Google Scholar
  27. 27.
    Dias, J., Paiva, A., Vala, M., Aylett, R., Woods, S., Zoll, C., Hall, L.: Empathic characters in computer-based personal and social education. In: Pivec, M. (ed.) Affective and Emotional Aspects of Human-Computer Interaction, pp. 246–254. IOS Press, Netherlands (2006)Google Scholar
  28. 28.
    Collins, K.: Game sound: an introduction to the history, theory and practice of video game music and sound design. MIT Press, Cambridge (2008)Google Scholar
  29. 29.
    Malone, T.W.: Toward a Theory of Intrinsically Motivating Instruction. Cognitive Science 5(4), 333–369 (1981)CrossRefGoogle Scholar
  30. 30.
    Kaya, N., Epps, H.H., Hall, D.: Relationship between color and emotion: a study of college students. College Student Journal, 396–405 (2004)Google Scholar
  31. 31.
    Alsmeyer, M., Luckin, R., Good, J.: Developing a novel interface for capturing self-reports of affect. In: Proceedings of the CHI 2008: Conference on Human Factors in Computing Systems, pp. 2883–2888. ACM Press, Florence (2008)Google Scholar
  32. 32.
    Razek, M.A., Chaffar, S., Frasson, C., Ochs, M.: Using machine learning techniques to recognize emotions for online learning environments. In: Pivec, M. (ed.) Affective and Emotional Aspects of Human-Computer Interaction, pp. 255–265. IOS Press, Netherlands (2006)Google Scholar
  33. 33.
    Nijdam, N.A.: Mapping emotion to color (2005),
  34. 34.
    Francis, J.J., Eccles, M.P., Johnston, M., Walker, A., Grimshaw, J., Foy, R., Kaner, E.F.S., Smith, L., Bonetti, D.: Constructing Questionnaires based on the Theory of Planned Behaviour: a manual for Health Services Researchers. Unpublished manuscript, University of Newcastle, Newcastle, UK (2004)Google Scholar
  35. 35.
    Díez, J.: The Elvira Project (2005),
  36. 36.
    Bunt, A., Conati, C.: Probabilistic Student Modeling to Improve Exploratory Behavior. Journal of User Modeling and User-Adapted Interaction 13(3), 269–309 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Karla Muñoz
    • 1
  • Paul Mc Kevitt
    • 1
  • Tom Lunney
    • 1
  • Julieta Noguez
    • 2
  • Luis Neri
    • 2
  1. 1.Intelligent Systems Research Centre, Faculty of Computing and EngineeringUniversity of UlsterDerry/LondonderryNorthern Ireland, UK
  2. 2.School of Engineering and ArchitectureTecnológico de MonterreyMexico CityMexico

Personalised recommendations