A GPGPU Transparent Virtualization Component for High Performance Computing Clouds

  • Giulio Giunta
  • Raffaele Montella
  • Giuseppe Agrillo
  • Giuseppe Coviello
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6271)

Abstract

The GPU Virtualization Service (gVirtuS) presented in this work tries to fill the gap between in-house hosted computing clusters, equipped with GPGPUs devices, and pay-for-use high performance virtual clusters deployed via public or private computing clouds. gVirtuS allows an instanced virtual machine to access GPGPUs in a transparent and hypervisor independent way, with an overhead slightly greater than a real machine/GPGPU setup. The performance of the components of gVirtuS is assessed through a suite of tests in different deployment scenarios, such as providing GPGPU power to cloud computing based HPC clusters and sharing remotely hosted GPGPUs among HPC nodes.

Keywords

Grid Cloud High-performance computing many core Virtualization Graphic processing units Hypervisor GPGPU 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
  2. 2.
  3. 3.
  4. 4.
  5. 5.
  6. 6.
    Vmware website, http://www.VMware.com/
  7. 7.
    Xen website, http://www.xen.org/
  8. 8.
    Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R.H., Konwinski, A., Lee, G., Patterson, D.A., Rabkin, A., Stoica, I., Zaharia, M.: Above the clouds: A berkeley view of cloud computing. Technical Report UCB/EECS-2009-28, Electrical Engineering and Computer Sciences University of California at Berkeley (February 2009)Google Scholar
  9. 9.
    Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer, R., Pratt, I., Warfield, A.: Xen and the art of virtualization. In: SOSP 2003: Proceedings of the Nineteenth ACM Symposium on Operating Systems Principles, pp. 164–177 (2003)Google Scholar
  10. 10.
    Buntinas, D., Mercier, G., Gropp, W.: Design and evaluation of nemesis, a scalable, low-latency, message-passing communication subsystem. In: CCGRID 2006: Proceedings of the Sixth IEEE International Symposium on Cluster Computing and the Grid, Washington, DC, USA, pp. 521–530. IEEE Computer Society, Los Alamitos (2006)Google Scholar
  11. 11.
    Che, S., Li, J., Sheaffer, J.W., Skadron, K., Lach, J.: Accelerating Compute-Intensive Applications with GPUs and FPGAs. In: Symposium on Application Specific Processors, SASP 2008, pp. 101–107 (2008)Google Scholar
  12. 12.
    Fenn, M., Murphy, M.A., Goasguen, S.: A study of a kvm-based cluster for grid computing. In: ACM Southeast Regional Conference (2009)Google Scholar
  13. 13.
    Foster, I., Zhao, Y., Raicu, I., Lu, S.: Cloud computing and grid computing 360-degree comparedGoogle Scholar
  14. 14.
    Gupta, V., Gavrilovska, A., Schwan, K., Kharche, H., Tolia, N., Talwar, V., Ranganathan, P.: Gvim: Gpu-accelerated virtual machines. In: HPCVirt 2009: Proceedings of the 3rd ACM Workshop on System-level Virtualization for High Performance Computing, pp. 17–24. ACM, New York (2009)Google Scholar
  15. 15.
    Andrs Lagar-cavilla, H., Satyanarayanan, M.: Vmm-independent graphics acceleration. In: Proceedings of VEE 2007. ACM Press, New York (2007)Google Scholar
  16. 16.
    Tim Grance Mell, P.: The nist definition of cloud computing. Technical Report Version 15, National Institute of Standards and Technology (July 2009)Google Scholar
  17. 17.
    Nurmi, D., Wolski, R., Grzegorczyk, C., Obertelli, G., Soman, S., Youseff, L., Zagorodnov, D.: Eucalyptus: an open-source cloud computing infrastructure. Journal of Physics: Conference Series 180(1), 012051 (2009)Google Scholar
  18. 18.
    Nurmi, D., Wolski, R., Grzegorczyk, C., Obertelli, G., Soman, S., Youseff, L., Zagorodnov, D.: The eucalyptus open-source cloud-computing system. In: IEEE International Symposium on Cluster Computing and the Grid, pp. 124–131 (2009)Google Scholar
  19. 19.
    Shi, L., Chen, H., Sun, J.: vcuda: Gpu accelerated high performance computing in virtual machines. In: IPDPS 2009: Proceedings of the 2009 IEEE International Symposium on Parallel&Distributed Processing, Washington, DC, USA, pp. 1–11. IEEE Computer Society, Los Alamitos (2009)Google Scholar
  20. 20.
    Tarditi, D., Puri, S., Oglesby, J.: Accelerator: using data parallelism to program gpus for general-purpose uses. In: ASPLOS-XII: Proceedings of the 12th International Conference on Architectural Support for Programming Languages and Operating Systems, pp. 325–335. ACM, New York (2006)CrossRefGoogle Scholar
  21. 21.
    Wang, J., Wright, K.l., Gopalan, K.: Xenloop: a transparent high performance inter-vm network loopback. In: Proceedings of the 17th International Symposium on High Performance Distributed Computing (HPDC 2008), pp. 109–118 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Giulio Giunta
    • 1
  • Raffaele Montella
    • 1
  • Giuseppe Agrillo
    • 1
  • Giuseppe Coviello
    • 1
  1. 1.Department of Applied ScienceUniversity of Napoli ParthenopeItaly

Personalised recommendations