Optimum Diffusion for Load Balancing in Mesh Networks

  • George S. Markomanolis
  • Nikolaos M. Missirlis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6271)


This paper studies the Diffusion method for the load balancing problem in case of weighted mesh graphs. Closed form formulae for the optimum values of the edge weights are determined using local Fourier analysis. It is shown that an extrapolated version of Diffusion (EDF) can become twice as fast for orthogonal mesh graphs. Also, as a byproduct of our analysis it is shown that EDF on tori is four times faster than on meshes.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brandt, A.: Multi–level adaptive solutions to boundary–value problems (1977)Google Scholar
  2. 2.
    Cybenko, G.: Dynamic load balancing for distributed memory multi-processors. J. Parallel and Distr. Comp. 7, 279–301 (1989)CrossRefGoogle Scholar
  3. 3.
    Hong, J.W., Tau, X.N., Cheu, M.: From local to global: an analysis of nearest neighbor balancing on hypercube. In: ACM Symp. on SIGMETRICS, pp. 73–82 (1988)Google Scholar
  4. 4.
    Boillat, J.: Load balancing and poisson equation in a graph. In: Concurrency: Practice and Experience, pp. 289–313 (1990)Google Scholar
  5. 5.
    Karagiorgos, G., Missirlis, N.M.: Convergence of the diffusion method for weighted torus graphs using fourier analysis. Theoretical Computer Science 401, 1–16 (2008)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Diekmannn, R., Muthukrishnan, M., Nayakkankuppam, M.V.: Engineering diffusive load balancing algorithms using experiments. In: Lüling, R., Bilardi, G., Ferreira, A., Rolim, J.D.P. (eds.) IRREGULAR 1997. LNCS, vol. 1253, Springer, Heidelberg (1997)CrossRefGoogle Scholar
  7. 7.
    Elsässer, R., Monien, B., Preis, R.: Optimal diffusion schemes and load balancing on product graphs. Parallel Proc. Letters 14, 61–73 (2004)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Xu, C.Z., Lau, F.C.M.: Optimal parameters for load balancing using the diffusion method in k-ary n-cube networks. Inform. Proc. Letters 47, 181–187 (1993)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Xu, C.Z., Lau, F.C.M.: Load balancing in parallel computers: Theory and Practice. Academic, New York (1997)Google Scholar
  10. 10.
    Young, D.M.: Iterative Solution of Large Linear Systems. Academic, New York (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • George S. Markomanolis
    • 1
  • Nikolaos M. Missirlis
    • 1
  1. 1.Department of Informatics and TelecommunicationsUniversity of AthensAthensGreece

Personalised recommendations