A Delay-Based Dynamic Load Balancing Method and Its Stability Analysis and Simulation

  • Qingyang Meng
  • Jianzhong Qiao
  • Shukuan Lin
  • Enze Wang
  • Peng Han
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6271)

Abstract

Delay phenomenon commonly exists in most load balancing systems for parallel computing. It can cause some unstable oscillatory actions and intensely affect the performance of the load balancing system. In this case, a time delay feedback control model is presented to describe the dynamic load balancing system in parallel surrounding. By choosing proper Lyapunov-Krasovskii functionals and using Moon inequality and Schur complement lemma, the optimal control law is obtained not only for the different delay conditions but also in a scalable system scale. At last, the simulation experiments based on multi-threads proved the validity of the theory and method introduced.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barker, K., Chernikov, A., Chrisochoides, N.: A Load Balancing Framework for Adaptive and Asynchronous Applications. IEEE Transaction on Parallel and Distributed Systems 15(2), 183–192 (2004)CrossRefGoogle Scholar
  2. 2.
    Rotaru, T., Nageli, H.: Dynamic Load balancing by Diffusion in Heterogeneous Systems. Journal of Parallel and Distributed Computing 64(4), 481–497 (2004)CrossRefMATHGoogle Scholar
  3. 3.
    Ghose, D., Kim, H.J., Kim, T.H.: Adaptive Divisible Load Scheduling Strategies for Workstation Clusters with Unknown Network Resources. IEEE Transaction on Parallel and Distributed Systems 16(10), 897–907 (2005)CrossRefGoogle Scholar
  4. 4.
    Jeannot, E., Vernier, F.: A Practical Approach of Diffusion Load Balancing Algorithms. In: Nagel, W.E., Walter, W.V., Lehner, W. (eds.) Euro-Par 2006. LNCS, vol. 4128, pp. 211–221. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Rie, C., Wanka, R.: Periodic Load Balancing on the N-Cycle: Analytical and Experimental Evaluation. In: Kermarrec, A.-M., Bougé, L., Priol, T. (eds.) Euro-Par 2007. LNCS, vol. 4641, pp. 805–814. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Catalyurek, U.V., Boman, E.G., Devine, K.D.: A repartitioning hypergraph model for dynamic load balancing. Journal of Parallel and Distributed Computing 69(8), 711–724 (2009)CrossRefGoogle Scholar
  7. 7.
    Abdallah, C.T., Alluri, N., Birdwell, J.D.: Linear Time Delay Model for Studying Load Balancing Instabilities in Parallel Computations. International Journal of Systems Science 34(10), 563–573 (2003)CrossRefMATHGoogle Scholar
  8. 8.
    Chiasson, J., Tang, Z., Ghanem, J.: The Effect of Time Delays on the Stability of Load Balancing Algorithms for Parallel Computations. IEEE Transactions on Control Systems Technology 13(6), 932–942 (2005)CrossRefGoogle Scholar
  9. 9.
    Tang, Z., Birdwell, J.D., Chiasson, J.: Resource-Constrained Load Balancing Controller for a Parallel Database. IEEE Transactions on Control Systems Technology 16(4), 834–840 (2008)CrossRefGoogle Scholar
  10. 10.
    Chiasson, J., Loiseau, J.J.: Application of Time Delay Systems. Springer, Heidelberg (2007)CrossRefMATHGoogle Scholar
  11. 11.
    Argonne National Lab.: MPICH-A Portable Implementation of MPI, http://www.mcs.anl.gov/research/projects/mpi/mpich2
  12. 12.
    Oak Ridge National Lab.: PVM (Parallel Virtual Machine), http://www.csm.ornl.gov/pvm
  13. 13.
    Dhakal, S., Hayat, M.M., Pezoa, J.E.: Dynamic Load Balancing in Distributed Systems in the Presence of Delays: A Regeneration-Theory Approach. IEEE Transactions on Parallel and Distributed Systems 18(4), 485–497 (2007)CrossRefGoogle Scholar
  14. 14.
    Callier, F.M., Desoer, C.A.: Linear System Theory. Springer, Heidelberg (1991)CrossRefMATHGoogle Scholar
  15. 15.
    Carson, M., Santay, D.: NIST Net – A Linux-based Network Emulation Tool. ACM SIGCOMM Computer Communication Review 33(3), 111–126 (2003)CrossRefGoogle Scholar
  16. 16.
    Liao, X., Chen, G., Sanchez, E.N.: Delay-dependent Exponential Stability Analysis of Delayed Neural Networks: an LMI Approach. Neural Networks 15, 855–866 (2002)CrossRefGoogle Scholar
  17. 17.
    Moon, Y.S., Park, P., Kwon, W.H., Lee, Y.S.: Delay-dependent robust stabilization of uncertain state-delayed systems. Int. J. of Control. 74, 1447–1455 (2001)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Boyd, S., Ghaoui, L., Feron, E.I.: Linear matrix inequalities in system and control theory. SIAM, Philadephia (1994)CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Qingyang Meng
    • 1
  • Jianzhong Qiao
    • 1
    • 2
  • Shukuan Lin
    • 1
  • Enze Wang
    • 1
  • Peng Han
    • 1
  1. 1.College of Information Science and EngineeringNortheastern UniversityShenyangChina
  2. 2.Key Laboratory of Software System and DevelopmentGeneric TechnologyShenyangChina

Personalised recommendations