Towards Artificial Systems: What Can We Learn from Human Perception?

  • Heinrich H. Bülthoff
  • Lewis L. Chuang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6230)

Abstract

Research in learning algorithms and sensor hardware has led to rapid advances in artificial systems over the past decade. However, their performance continues to fall short of the efficiency and versatility of human behavior. In many ways, a deeper understanding of how human perceptual systems process and act upon physical sensory information can contribute to the development of better artificial systems. In the presented research, we highlight how the latest tools in computer vision, computer graphics, and virtual reality technology can be used to systematically understand the factors that determine how humans perform in realistic scenarios of complex task-solving.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Armann, R., Bülthoff, I.: Gaze Behavior in Face Comparison: The Role of Sex, Task, and Symmetry. Attention, Perception & Psychophysics 71, 1107–1126 (2009)CrossRefGoogle Scholar
  2. 2.
    Keil, M.S.: “I Look in Your Eyes, Honey”: Internal Face Features Induce Spatial Frequency Preference for Human Face Processing. PLOS Computational Biology 5, 1–13 (2009)CrossRefGoogle Scholar
  3. 3.
    Chuang, L., Vuong, Q.C., Thornton, I.M., Bülthoff, H.H.: Recognizing novel deforming objects. Visual Cognition 14, 85–88 (2006)Google Scholar
  4. 4.
    Knappmeyer, B., Thornton, I.M., Bülthoff, H.H.: The use of facial motion and facial form during the processing of identity. Vision Research 43, 1921–1936 (2003)CrossRefGoogle Scholar
  5. 5.
    Wallis, G.M., Bülthoff, H.H.: Effects of Temporal Association on Recognition Memory. Proceedings of the National Academy of Sciences of the United States of America 98, 4800–4804 (2001)CrossRefGoogle Scholar
  6. 6.
    Wallis, G., Backus, B.T., Langer, M., Huebner, G., Bülthoff, H.H.: Learning Illumination- and Orientation-Invariant Representations of Objects Through Temporal Association. Journal of Vision 9, 1–8 (2009)CrossRefGoogle Scholar
  7. 7.
    Wallraven, C., Bülthoff, H.H.: Automatic Acquisition of Exemplar-Based Representations for Recognition from Image Sequences. In: IEEE Conference on Computer Vision and Pattern Recognition (2001)Google Scholar
  8. 8.
    Bülthoff, H.H., Wallraven, C., Graf, A.: View-Based Dynamic Object Recognition Based on Human Perception. In: Proceedings of the 16th International Conference on Pattern Recognition, pp. 768–776 (2002)Google Scholar
  9. 9.
    Newell, F.N., Wallraven, C., Huber, S.: The role of characteristic motion on object categorization. Journal of Vision 4, 118–129 (2004)CrossRefGoogle Scholar
  10. 10.
    Curio, C., Bülthoff, H.H., Giese, M.A.: Dynamic Faces: Insights from Experiments and Computation. MIT Press, Cambridge (2010)Google Scholar
  11. 11.
    Vogel, J.A., Schwaninger, A., Wallraven, C., Bülthoff, H.H.: Categorization of natural scenes: Local versus Global Information and the Role of Color. ACM Transactions on Applied Perception 4, 1–21 (2010)Google Scholar
  12. 12.
    Chuang, L.L., Bieg, H.-J., Fleming, R.W., Bülthoff, H.H.: Measuring Unrestrained Gaze on Wall-Sized Displays. In: Proceedings of the 28th European Conference on Cognitive Ergonomics (2010)Google Scholar
  13. 13.
    Chuang, L.L., Vuong, Q.C., Thornton, I.M., Bülthoff, H.H.: Human Observers Use Personal Exploration Patterns in Novel Object Recognition. Perception 36(Suppl.), 49 (2007)Google Scholar
  14. 14.
    Blanz, V., Tarr, M.J., Bülthoff, H.H.: What Object Attributes Determine Canonical Views? Perception 28, 575–600 (1999)CrossRefGoogle Scholar
  15. 15.
    Gaißert, N., Wallraven, C.: Perceptual Representations of Parametricaly-Defined and Natural Objects Comparing Vision and Haptics. In: Proceedings of the Haptics Symposium, pp. 1–8 (2010)Google Scholar
  16. 16.
    Sprague, N., Ballard, D., Robinson, A.: Modeling Embodied Visual Behaviors. Transactions on Applied Perception 4, 1–26 (2007)CrossRefGoogle Scholar
  17. 17.
    Bieg, H.-J., Chuang, L.L., Fleming, R.W., Reiterer, H., Bülthoff, H.H.: Eye and Pointer Coordination in Search and Selection Tasks. In: Proceedings of the Symposium on Eye Tracking Research and Applications, pp. 89–92 (2010)Google Scholar
  18. 18.
    Nieuwenhuizen, F.M., Zaal, P.M.T., Teufel, H., Mulder, M., Bülthoff, H.H.: The Effect of Simulator Motion on Pilot Control Behaviour for Agile and Inert Helicopter Dynamics. In: 35th European Rotorcraft Forum, pp. 1–13 (2009)Google Scholar
  19. 19.
    Niccolini, M.L., Pollini, L., Innocenti, M., Robbuffo Giordano, P., Teufel, H., Bülthoff, H.H.: Towards Real-Time Aircraft Simulation with the MPI Motion Simulator. In: Proceedings of the 2009 AIAA Modeling and Simulation Technologies Conference, pp. 1–10 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Heinrich H. Bülthoff
    • 1
    • 2
  • Lewis L. Chuang
    • 1
  1. 1.Max Planck Institute for Biological CyberneticsTübingenGermany
  2. 2.Department of Brain and Cognitive EngineeringKorea UniversitySeoulKorea

Personalised recommendations