Advertisement

Probabilistic Mobility Models for Mobile and Wireless Networks

  • Lei Song
  • Jens Chr. Godskesen
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 323)

Abstract

In this paper we present a probabilistic broadcast calculus for mobile and wireless networks whose connections are unreliable. In our calculus, broadcasted messages can be lost with a certain probability, and due to mobility the connection probabilities may change. If a network broadcasts a message from a location, it will evolve to a network distribution depending on whether nodes at other locations receive the message or not. Mobility of nodes is not arbitrary but guarded by a probabilistic mobility function (PMF), and we also define the notion of a weak bisimulation given a PMF. It is possible to have weak bisimular networks which have different probabilistic connectivity information. We furthermore examine the relation between our weak bisimulation and a minor variant of PCTL* [1]. Finally, we apply our calculus on a small example called the Zeroconf protocol [2].

References

  1. 1.
    Desharnais, J., Gupta, V., Jagadeesan, R., Panangaden, P.: Weak Bisimulation is Sound and Complete for PCTL*. In: Brim, L., Jančar, P., Křetínský, M., Kucera, A. (eds.) CONCUR 2002. LNCS, vol. 2421, pp. 355–370. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. 2.
    Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge (2008)zbMATHGoogle Scholar
  3. 3.
    Nanz, S., Hankin, C.: A Framework for Security Analysis of Mobile Wireless Networks. Theoretical Computer Science 367(1-2), 203–227 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Singh, A., Ramakrishnan, C.R., Smolka, S.A.: A Process Calculus for Mobile Ad Hoc Networks. In: Olso, Lea, D., Zavattaro, G. (eds.) COORDINATION 2008. LNCS, vol. 5052, pp. 296–314. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    Merro, M.: An Observational Theory for Mobile Ad-hoc Networks. Electronic Notes in Theoretical Computer Scienc, vol. 173, pp. 275–293. Elsevier, Amsterdam (2007)Google Scholar
  6. 6.
    Ghassemi, F., Fokkink, W., Movaghar, A.: Restricted Broadcast Process Theory. In: Proceedings of 6th Conference on Software Engineering and Formal Methods (SEFM’08), pp. 345–354. IEEE Press, Los Alamitos (2008)CrossRefGoogle Scholar
  7. 7.
    Godskesen, J.C.: A Calculus for Mobile Ad-hoc Networks. In: Murphy, A.L., Vitek, J. (eds.) COORDINATION 2007. LNCS, vol. 4467, pp. 132–150. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Godskesen, J.C.: A Calculus for Mobile Ad-hoc Networks with Static Location Binding. In: 15th International Workshop on Expressiveness in Concurrency (2008)Google Scholar
  9. 9.
    Segala, R., Lynch, N.: Probabilistic Simulations for Probabilistic Processes. In: Uppsala, Jonsson, B., Parrow, J. (eds.) CONCUR 1994. LNCS, vol. 836, pp. 481–496. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  10. 10.
    Philippou, A., Lee, I., Sokolsky, O.: Weak Bisimulation for Probabilistic Systems. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 334–349. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  11. 11.
    Merro, M., Sibilio, E.: A Timed Calculus for Wireless Systems. In: Arbab, F., Sirjani, M. (eds.) FSEN 2009. LNCS, vol. 5961, pp. 228–243. Springer, Heidelberg (2010)Google Scholar

Copyright information

© IFIP 2010

Authors and Affiliations

  • Lei Song
    • 1
  • Jens Chr. Godskesen
    • 1
  1. 1.IT University of CopenhagenCopenhagen SDenmark

Personalised recommendations