Advertisement

Approximating the Non-contiguous Multiple Organization Packing Problem

  • Marin Bougeret
  • Pierre François Dutot
  • Klaus Jansen
  • Christina Otte
  • Denis Trystram
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 323)

Abstract

We present in this paper a Open image in new window -approximation algorithm for scheduling rigid jobs on multi-organizations. For a given set of n jobs, the goal is to construct a schedule for N organizations (composed each of m identical processors) minimizing the maximum completion time (makespan). This algorithm runs in O(n(N + log(n))log(np max )), where p max is the maximum processing time of the jobs. It improves the best existing low cost approximation algorithms. Moreover, the proposed analysis can be extended to a more generic approach which suggests different job partitions that could lead to low cost approximation algorithms of ratio better than Open image in new window .

Keywords

Packing Problem Strip Packing Algorithmic Cost Strip Packing Problem Global List 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Zhuk, S.: Approximate algorithms to pack rectangles into several strips. Discrete Mathematics and Applications 16(1), 73–85 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Coffman Jr., E., Garey, M., Johnson, D., Tarjan, R.: Performance bounds for level-oriented two-dimensional packing algorithms. SIAM J. Comput. 9, 808 (1980)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Schiermeyer, I.: Reverse-fit: A 2-optimal algorithm for packing rectangles. In: van Leeuwen, J. (ed.) ESA 1994. LNCS, vol. 855, pp. 290–299. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  4. 4.
    Steinberg, A.: A strip-packing algorithm with absolute performance bound 2. SIAM Journal on Computing 26, 401 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Kenyon, C., Rémila, E.: A near-optimal solution to a two-dimensional cutting stock problem. Mathematics of Operations Research, 645–656 (2000)Google Scholar
  6. 6.
    Jansen, K., Solis-Oba, R.: New approximability results for 2-dimensional packing problems. In: Kučera, L., Kučera, A. (eds.) MFCS 2007. LNCS, vol. 4708, p. 103. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Ye, D., Han, X., Zhang, G.: On-Line Multiple-Strip Packing. In: Proceedings of the 3rd International Conference on Combinatorial Optimization and Applications, p. 165. Springer, Heidelberg (2009)Google Scholar
  8. 8.
    Bougeret, M., Dutot, P.-F., Jansen, K., Otte, C., Trystram, D.: Approximation algorithms for multiple strip packing. In: Bampis, E., Jansen, K. (eds.) Approximation and Online Algorithms. LNCS, vol. 5893, pp. 37–48. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Garey, M., Graham, R.: Bounds for multiprocessor scheduling with resource constraints. SIAM J. Comput. 4(2), 187–200 (1975)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Schwiegelshohn, U., Tchernykh, A., Yahyapour, R.: Online scheduling in grids. In: Proceedings of IPDPS, pp. 1–10 (2008)Google Scholar
  11. 11.
    Dutot, P.-F., Pascual, F., Rzadca, K., Trystram, D.: Approximation algorithms for the multi-organization scheduling problem. IEEE Transactions on Parallel and Distributed Systems, TPDS (2010) (submitted )Google Scholar
  12. 12.
    Dutot, P.-F., Mounié, G., Trystram, D.: Scheduling Parallel Tasks: Approximation Algorithms. In: Handbook of Scheduling. CRC Press, Boca Raton (2004)Google Scholar
  13. 13.
    Hochbaum, D.S., Shmoys, D.B.: A polynomial approximation scheme for scheduling on uniform processors: Using the dual approximation approach. SIAM J. Comput. 17(3), 539–551 (1988)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© IFIP 2010

Authors and Affiliations

  • Marin Bougeret
    • 1
  • Pierre François Dutot
    • 1
  • Klaus Jansen
    • 2
  • Christina Otte
    • 2
  • Denis Trystram
    • 1
  1. 1.Grenoble UniversityMontbonnot Saint MartinFrance
  2. 2.Department of Computer ScienceChristian-Albrechts-University to KielKielGermany

Personalised recommendations