This paper describes some basic relationships between mathematical structures that are relevant in quantum logic and probability, namely convex sets, effect algebras, and a new class of functors that we call ‘convex functors’; they include what are usually called probability distribution functors. These relationships take the form of three adjunctions. Two of these three are ‘dual’ adjunctions for convex sets, one time with the Boolean truth values {0,1} as dualising object, and one time with the probablity values [0,1]. The third adjunction is between effect algebras and convex functors.


Unit Interval Natural Transformation Effect Algebra Quantum Logic Orthomodular Lattice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Abramsky, S.: Domain theory in logical form. Ann. Pure & Appl. Logic 51(1/2), 1–77 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Baez, J.C., Stay, M.: Physics, topology, logic and computation: A Rosetta stone (2009), Scholar
  3. 3.
    Barr, M., Wells, C.: Toposes, Triples and Theories. Springer, Berlin (1985); Revised and corrected version, zbMATHGoogle Scholar
  4. 4.
    Busch, P., Grabowski, M., Lahti, P.: Operational Quantum Physics. Springer, Berlin (1995)zbMATHGoogle Scholar
  5. 5.
    Coumans, D., Jacobs, B.: Scalars, monads and categories (2010), Scholar
  6. 6.
    Doberkat, E.-E.: Eilenberg-Moore algebras for stochastic relations. Inf. & Comp. 204(12), 1756–1781 (2006); Erratum and addendum 206(12), 1476–1484 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Dvurečenskij, A., Pulmannová, S.: New Trends in Quantum Structures. Kluwer Acad. Publ., Dordrecht (2000)zbMATHGoogle Scholar
  8. 8.
    Flood, J.: Semiconvex geometry. Journ. Austr. Math. Soc., Series A 30, 496–510 (1981)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Foulis, D.J., Bennett, M.K.: Effect algebras and unsharp quantum logics. Found. Physics 24(10), 1331–1352 (1994)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Foulis, D.J., Greechie, R.J., Bennett, M.K.: The transition to unigroups. Int. Journ. Theor. Physics 37(1), 45–63 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Fritz, T.: Convex spaces I: Definition and examples (2009), Scholar
  12. 12.
    Gudder, S.: A general theory of convexity. Milan Journal of Mathematics 49(1), 89–96 (1979)zbMATHMathSciNetGoogle Scholar
  13. 13.
    Heunen, C., Jacobs, B.: Quantum logic in dagger kernel categories. Order (2010) doi:10.1007/s11083-010-9145-5Google Scholar
  14. 14.
    Jacobs, B.: Coalgebras and approximation. In: Nerode, A., Matiyasevich, Y.V. (eds.) LFCS 1994. LNCS, vol. 813, pp. 173–183. Springer, Heidelberg (1994)Google Scholar
  15. 15.
    Jacobs, B.: Semantics of weakening and contraction. Ann. Pure & Appl. Logic 69(1), 73–106 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Jacobs, B.: Involutive categories and monoids, with a GNS-correspondence. In: Quantum Physics and Logic, QPL (2010)Google Scholar
  17. 17.
    Jacobs, B., Mandemaker, J.: Coreflections in algebraic quantum logic. In: Quantum Physics and Logic, QPL (2010)Google Scholar
  18. 18.
    Johnstone, P.T.: Stone Spaces. Cambridge Studies in Advanced Mathematics, vol. 3. Cambridge Univ. Press, Cambridge (1982)zbMATHGoogle Scholar
  19. 19.
    Johnstone, P.T., Vickers, S.: Preframe presentations present. In: Carboni, A., Pedicchio, M.C., Rosolini, G. (eds.) Como Conference on Category Theory. Lect. Notes Math., vol. 1488, pp. 193–212. Springer, Berlin (1991)Google Scholar
  20. 20.
    Keimel, K.: The monad of probability measures over compact ordered spaces and its Eilenberg-Moore algebras. Topology and its Applications 156, 227–239 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Kock, A.: Bilinearity and cartesian closed monads. Math. Scand. 29, 161–174 (1971)MathSciNetGoogle Scholar
  22. 22.
    Kock, A.: Closed categories generated by commutative monads. Journ. Austr. Math. Soc. XII, 405–424 (1971)CrossRefMathSciNetGoogle Scholar
  23. 23.
    Manes, E.G.: Algebraic Theories. Springer, Berlin (1974)Google Scholar
  24. 24.
    Mac Lane, S.: Categories for the Working Mathematician. Springer, Berlin (1971)zbMATHGoogle Scholar
  25. 25.
    von Neumann, J., Morgenstern, O.: Theory of Games and Economic Behavior. Princeton University Press, Princeton (1944)zbMATHGoogle Scholar
  26. 26.
    Pulmannová, S., Gudder, S.: Representation theorem for convex effect algebras. Commentationes Mathematicae Universitatis Carolinae 39(4), 645–659 (1998), zbMATHMathSciNetGoogle Scholar
  27. 27.
    Stone, M.H.: Postulates for the barycentric calculus. Ann. Math. 29, 25–30 (1949)zbMATHGoogle Scholar
  28. 28.
    Swirszcz, T.: Monadic functors and convexity. Bull. de l’Acad. Polonaise des Sciences. Sér. des sciences math., astr. et phys. 22, 39–42 (1974)zbMATHMathSciNetGoogle Scholar
  29. 29.
    Vickers, S.: Topology Via Logic. Tracts in Theor. Comp. Sci, vol. 5. Cambridge Univ. Press, Cambridge (1989)zbMATHGoogle Scholar

Copyright information

© IFIP 2010

Authors and Affiliations

  • Bart Jacobs
    • 1
  1. 1.Institute for Computing and Information Sciences (iCIS)Radboud University NijmegenThe Netherlands

Personalised recommendations