SelSta - A Biologically Inspired Approach for Self-Stabilizing Humanoid Robot Walking

  • Bojan Jakimovski
  • Michael Kotke
  • Martin Hörenz
  • Erik Maehle
Conference paper
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 329)

Abstract

In this paper we elaborate a study on self-stabilizing humanoid robot that achieves run-time self-stabilization and energy optimized walking gait pattern parameters on different kinds of flat surfaces. The algorithmic approach named SelSta uses biologically inspired notions that introduce robustness into the self-stabilizing functionality of the humanoid robot. The approach has been practically tested on our S2-HuRo humanoid robot and the results from the tests demonstrate that it can be successfully used on humanoid robots to achieve autonomic optimized stabilization of their walking on different kinds of flat surfaces.

Keywords

Self-stabilizing humanoid robot S2-HuRo biologically inspired approach symbiosis SelSta approach humanoid robot walking optimization 

References

  1. 1.
  2. 2.
    Kopacek, P., Schierer, E., Wuerzl, M.: A Controller Network for a Humanoid Robot. In: Moreno Díaz, R., Pichler, F., Quesada Arencibia, A. (eds.) EUROCAST 2005. LNCS, vol. 3643, pp. 584–589. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Tsay, T.I.J., Lai, C.H.: Design and Control of a Humanoid Robot. In: IEEE/RSJ International Conference on Intelligent Robots and Systems 2006, vol. 9, pp. 2002–2007 (2006)Google Scholar
  4. 4.
    Vukobratovic, M., Borovac, B., Surla, D., Stokic, D.: Biped Locomotion, Dynamics, Stability, Control and Application, Springer, Berlin (1990). MATHGoogle Scholar
  5. 5.
    Yang, D.C., Liu, L.: Kinematic Analysis of Humanoid Robot. Chinese J. of Mechanical Engineering 39, 70–74 (2003)CrossRefGoogle Scholar
  6. 6.
    Vukobratovic, M., Juricic, D.: Contribution to the synthesis of biped gait. IEEE Trans. Bio-Med. Eng. BME-16(1), 1–6 (1969)Google Scholar
  7. 7.
    Vukobratovic, M.: How to control artificial anthropomorphic system. IEEE Trans. Syst. Man. Cyb. SMC-3(5), 497–507 (1973)Google Scholar
  8. 8.
    Lee, B., Stonier, D., Yong-Duk, K., Jeong-Ki, Y., Jong-Hwan Kim, K.: Modifiable walking pattern generation using real-time ZMP manipulation for humanoid robots. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2007, pp. 4221–4226 (2007)Google Scholar
  9. 9.
    Cuevas, E., Zaldivar, D., Tapia, E., Rojas, R.: An Incremental Fuzzy Algorithm for the Balance of Humanoid Robots. Humanoid Robots: New Developments (2007)Google Scholar
  10. 10.
    Lei, X., Su, J.: Feedback Control of Humanoid Robot Locomotion. In: Wang, L., Jin, Y. (eds.) FSKD 2005. LNCS (LNAI), vol. 3613, pp. 890–899. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Qing, T., Rong, X., Yong, L., Jian, C.: HumRoboSim: An Autonomous Humanoid Robot Simulation System. In: 2008 International Conference on Cyberworlds, pp. 537–542 (2008)Google Scholar
  12. 12.
    Friedmann, M., Petersen, K., von Stryk, O.: Tailored Real-Time Simulation for Teams of Humanoid Robots. In: Visser, U., Ribeiro, F., Ohashi, T., Dellaert, F. (eds.) RoboCup 2007: Robot Soccer World Cup XI. LNCS (LNAI), vol. 5001, pp. 425–432. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Calderon, C.A.A., Mohan, R.E., Zhou, C.: Virtual-RE: A Humanoid Robotic Soccer Simulator. In: 2008 International Conference on Cyberworlds, pp. 561–566 (2008)Google Scholar
  14. 14.
    Deng, X., Wang, J., Xiang, Z.: The Simulation Analysis of Humanoid Robot Based on Dynamics and Kinematics. In: Xiong, C.-H., Liu, H., Huang, Y., Xiong, Y.L. (eds.) ICIRA 2008. LNCS (LNAI), vol. 5314, pp. 93–100. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  15. 15.
  16. 16.
  17. 17.
  18. 18.
  19. 19.
    Bartsch, S., Kirchner, F.: Robust control of a humanoid robot using a bio-inspired approach based on central pattern generators, reflexes, and proprioceptive feedback. In: Bartsch, S., Kirchner, F. (eds.) IEEE International Conference on Robotics and Biomimetics, pp. 1547–1552 (2006)Google Scholar
  20. 20.
    Kim, H.K., Kwon, W., Roh, K.S.: Biologically Inspired Energy Efficient Walking for Biped Robots. In: IEEE International Conference on Robotics and Biomimetics, pp. 630–635 (2006)Google Scholar
  21. 21.
    Kratz, R., Klug, S., Stelzer, M., von Stryk, O.: Biologically Inspired Reflex Based Stabilization Control of a Humanoid Robot with Artificial SMA Muscles. In: IEEE International Conference on Robotics and Biomimetics, pp. 1089–1094 (2006)Google Scholar
  22. 22.
    Morimoto, J., Endo, G., Nakanishi, J., Cheng, G.: A Biologically Inspired Biped Locomotion Strategy for Humanoid Robots: Modulation of Sinusoidal Patterns by a Coupled Oscillator Model. IEEE Transactions Robotics 24, 185–191 (2008)CrossRefGoogle Scholar
  23. 23.
  24. 24.
    Ahmadjian, V., Paracer, S.: Symbiosis: an introduction to biological associations. Oxford University Press, Oxford (2000)Google Scholar

Copyright information

© IFIP 2010

Authors and Affiliations

  • Bojan Jakimovski
    • 1
  • Michael Kotke
    • 1
  • Martin Hörenz
    • 1
  • Erik Maehle
    • 1
  1. 1.Institute of Computer EngineeringUniversity LübeckGermany

Personalised recommendations