Advertisement

Abstract

Many psychologists, philosophers, and computer scientist have written about mental models, but have remained vague about the nature of such models. Do they consist of propositions, concepts, rules, images, or some other kind of mental representation? This paper will argue that a unified account can be achieved by understanding mental models as representations consisting of patterns of activation in populations of neurons. The fertility of this account will be illustrated by showing its applicability to causal reasoning and the generation of novel concepts in scientific discovery and technological innovation. I will also discuss the implications of this view of mental models for evaluating claims that cognition is embodied.

Keywords

Mental Model Motor Control Neural Population Causal Reasoning Explanatory Hypothesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anderson, J.R.: How Can the Mind Occur in the Physical Universe? Oxford University Press, Oxford (2007)CrossRefGoogle Scholar
  2. 2.
    Churchland, P.S., Sejnowski, T.: The Computational Brain. MIT Press, Cambridge (1992)Google Scholar
  3. 3.
    Craik, K.: The Nature of Explanation. Cambridge University Press, Cambridge (1943)Google Scholar
  4. 4.
    Davidson, P.R., Wolpert, D.M.: Widespread access to predictive models in the motor system: A short review. Journal of Neural Engineering 2, S313–S319 (2005)CrossRefGoogle Scholar
  5. 5.
    Dayan, P., Abbott, L.F.: Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems. MIT Press, Cambridge (2001)zbMATHGoogle Scholar
  6. 6.
    Dreyfus, H.L.: Why Heideggerian AI failed and how fixing it would require making it more Heidegerian. Philosophical Psychology 20, 247–268 (2007)CrossRefGoogle Scholar
  7. 7.
    Edelman, S.: Computing the Mind: How the Mind Really Works. Oxford University Press, Oxford (2008)Google Scholar
  8. 8.
    Eliasmith, C.: Cognition with neurons: A large-scale, biologically realistic model of the Wason task. In: Bara, B., Barasalou, L., Bucciarelli, M. (eds.) Proceedings of the XXVII Annual Conference of the Cognitive Science Society, pp. 624–629. Lawrence Erlbaum Associates, Mahwah (2005)Google Scholar
  9. 9.
    Eliasmith, C.: Neurosemantics and categories. In: Cohen, H., Lefebvre, C. (eds.) Handbook of Categorization in Cognitive Science, pp. 1035–1054. Elsevier, Amsterdam (2005)CrossRefGoogle Scholar
  10. 10.
    Eliasmith, C., Anderson, C.H.: Neural Engineering: Computation, Representation and Dynamics in Neurobiological Systems. MIT Press, Cambridge (2003)Google Scholar
  11. 11.
    Elman, J.L.: Finding structure in time. Cognitive Science 14, 179–211 (1990)CrossRefGoogle Scholar
  12. 12.
    Fodor, J.: The Mind Doesn’t Work that Way. MIT Press, Cambridge (2000)Google Scholar
  13. 13.
    Gentner, D., Stevens, A.L. (eds.): Mental Models. Lawrence Erlbaum, Hillsdale (1983)Google Scholar
  14. 14.
    Gibbs, R.W.: Embodiment and Cognitive Science. Cambridge University Press, Cambridge (2006)Google Scholar
  15. 15.
    Holland, J.H., Holyoak, K.J., Nisbett, R.E., Thagard, P.R.: Induction: Processes of Inference, Learning, and Discovery. MIT Press/Bradford Books, Cambridge (1986)Google Scholar
  16. 16.
    Johnson-Laird, P.N.: Mental Models. Harvard University Press, Cambridge (1983)Google Scholar
  17. 17.
    Johnson-Laird, P.N.: The history of mental models. In: Manktelow, K., Chung, M.C. (eds.) Psychology of Reasoning: Theoretical and Historical Perspectives, pp. 179–212. Psychology Press, New York (2004)Google Scholar
  18. 18.
    Johnson-Laird, P.N.: How We Reason. Oxford University Press, Oxford (2006)Google Scholar
  19. 19.
    Johnson-Laird, P.N., Byrne, R.M.: Deduction. Lawrence Erlbaum Associates, Hillsdale (1991)Google Scholar
  20. 20.
    Kaas, J.H.: Topographic maps are fundamental to sensory processing. Brain research bulletin 44, 107–112 (1997)CrossRefGoogle Scholar
  21. 21.
    Knudsen, E.I., du Lac, S., Esterly, S.D.: Computational maps in the brain. Annual Review of Neuroscience 10, 41–65 (1987)CrossRefGoogle Scholar
  22. 22.
    Magnani, L.: Model-based creative abduction. In: Magnani, L., Nersessian, N.J., Thagard, P. (eds.) Model-Based Reasoning in Scientific Discovery, pp. 219–238. Kluwer/Plenum, New York (1999)Google Scholar
  23. 23.
    Magnani, L.: Abduction, Reason, and Science: Processes of Discovery and Explanation. Kluwer/Plenum, New York (2001)Google Scholar
  24. 24.
    Magnani, L.: Abductive Cognition. The Epistemological and Eco-Cognitive Dimensions of Hypothetical Reasoning. Springer, Berlin (2009)zbMATHGoogle Scholar
  25. 25.
    Michotte, A.: The Perception of Causality. Miles, T.R., Miles, E. (trans.), Methuen, London (1963)Google Scholar
  26. 26.
    Nersessian, N.J.: Creating Scientific Concepts. MIT Press, Cambridge (2008)Google Scholar
  27. 27.
    O’Reilly, R.C., Munakata, Y.: Computational Explorations in Cognitive Neuroscience. MIT Press, Cambridge (2000)Google Scholar
  28. 28.
    Parisien, C., Thagard, P.: Robosemantics: How Stanley the Volkswagen represents the world. Minds and Machines 18, 169–178 (2008)CrossRefGoogle Scholar
  29. 29.
    Peirce, C.S.: Collected Papers. Harvard University Press, Cambridge (1931-1958)Google Scholar
  30. 30.
    Peirce, C.S.: Reasoning and the Logic of Things. Harvard University Press, Cambridge (1992)Google Scholar
  31. 31.
    Plate, T.: Holographic Reduced Representations. CSLI, Stanford (2003)Google Scholar
  32. 32.
    Quartz, S.R., Sejnowski, T.J.: The neural basis of cognitive development: A constructivist manifesto. Behavioral and Brain Sciences 20, 537–556 (1997)Google Scholar
  33. 33.
    Quartz, S.R., Sejnowski, T.J.: Liars, Lovers, and Heroes: What the New Brain Science Reveals about How We Become Who We Are. Morrow, William, New York (2002)Google Scholar
  34. 34.
    Rips, L.J.: Mental muddles. In: Brand, M., Harnish, R.M. (eds.) The representation of knowledge and belief, pp. 258–286. University of Arizona Press, Tucson (1986)Google Scholar
  35. 35.
    Salmon, W.C.: Four decades of scientific explanation. In: Kitcher, P., Salmon, W.C. (eds.) Scientific Explanation. Minnesota Studies in the Philosophy of Science, vol. XIII, pp. 3–219. University of Minnesota Press, Minneapolis (1989)Google Scholar
  36. 36.
    Shelley, C.P.: Visual abductive reasoning in archaeology. Philosophy of Science 63, 278–301 (1996)CrossRefGoogle Scholar
  37. 37.
    Smith, E.E., Kosslyn, S.M.: Cognitive Psychology: Mind and Brain. Pearson Prentice Hall, Upper Saddle River (2007)Google Scholar
  38. 38.
    Stewart, T.C., Eliasmith, C.: Spiking neurons and central executive control: The origin of the 50-millisecond cognitive cycle. In: Howes, A., Peebles, D., Cooper, R. (eds.) 9th International Conference on Cognitive Modeling ICCM 2009, Manchester, UK (2009)Google Scholar
  39. 39.
    Tauber, M.J., Ackerman, D. (eds.): Mental Models and Human-Computer Interaction, vol. 2. North-Holland, Amsterdam (1990)Google Scholar
  40. 40.
    Thagard, P.: Computational Philosophy of Science. MIT Press, Cambridge (1988)Google Scholar
  41. 41.
    Thagard, P.: Abductive inference: From philosophical analysis to neural mechanisms. In: Feeney, A., Heit, E. (eds.) Inductive Reasoning: Experimental, Developmental, and Computational Approaches, pp. 226–247. Cambridge University Press, Cambridge (2007)CrossRefGoogle Scholar
  42. 42.
    Thagard, P.: The Brain and the Meaning of Life. Princeton University Press, Princeton (2010)Google Scholar
  43. 43.
    Thagard, P., Aubie, B.: Emotional consciousness: A neural model of how cognitive appraisal and somatic perception interact to produce qualitative experience. Consciousness and Cognition 17, 811–834 (2008)CrossRefGoogle Scholar
  44. 44.
    Thagard, P., Litt, A.: Models of scientific explanation. In: Sun, R. (ed.) The Cambridge Handbook of Computational sychology, pp. 549–564. Cambridge University Press, Cambridge (2008)Google Scholar
  45. 45.
    Thagard, P., Shelley, C.P.: Abductive reasoning: Logic, visual thinking, and coherence. In: Dalla Chiara, M.L., Doets, K., Mundici, D., van Benthem, J. (eds.) Logic and Scientific Methods, pp. 413–427. Kluwer, Dordrecht (1997)Google Scholar
  46. 46.
    Thagard, P., Stewart, T.C.: The Aha! experience: Creativity through emergent binding in neural networks. under review (forthcoming)Google Scholar
  47. 47.
    Wolpert, D.M., Ghahramani, Z.: Computational principles of movement neuroscience. Nature Neuroscience 3, 1212–1217 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Paul Thagard
    • 1
  1. 1.Department of PhilosophyUniversity of WaterlooWaterlooCanada

Personalised recommendations