Advertisement

Modern Control Solutions with Applications in Mechatronic Systems

  • Claudia-Adina Dragoş
  • Stefan Preitl
  • Radu-Emil Precup
  • Marian Creţiu
  • János Fodor
Part of the Studies in Computational Intelligence book series (SCI, volume 313)

Abstract

The chapter presents a comparison between several modern control solutions for mechatronic systems. A synthesis of the structures included in the modern based-design solutions is offered. The solutions deal with model predictive control, fuzzy control, adaptive control and combined control solutions between different control strategies and structures. Digital simulation and experimental results are presented accepting different modifications of the reference input or disturbances.

Keywords

Control solutions fuzzy control magnetic levitation system mechatronic systems predictive control 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Isermann, R.: Mechatronic Systems: Fundamentals. Springer, Heidelberg (2005)Google Scholar
  2. 2.
    Škrjanc, I., Blažič, S., Matko, D.: Model-reference Fuzzy Adaptive Control as a Framework for Nonlinear System Control. J. Intell. Robot Syst. 36(3), 331–347 (2003)CrossRefGoogle Scholar
  3. 3.
    Precup, R.-E., Preitl, S.: Fuzzy Controllers. Editura Orizonturi Universitare Publishers, Timisoara (1999)Google Scholar
  4. 4.
    Camacho, E.F., Bordons, C.: Model Predictive Control, 2nd edn. Springer, Heidelberg (2004)zbMATHGoogle Scholar
  5. 5.
    Brosilow, C., Joseph, B.: Techniques of Model-based Predictive Control. Prentice Hall PTR, Upper Sanddle River (2002)Google Scholar
  6. 6.
    Ho, W.H., Chou, J.H.: Design of Optimal Controllers for Takagi-Sugeno Fuzzy-Model-based Systems. IEEE Trans. Syst. Man Cybern. A 37(3), 329–339 (2007)CrossRefGoogle Scholar
  7. 7.
    Van der Heijden, A.C., Serrarens, A.F.A., Camlibel, M.K., Nijmejer, H.: Hybrid optimal control of dry clutch engagement. Int. J. Control 80(11), 1717–1728 (2007)zbMATHCrossRefGoogle Scholar
  8. 8.
    Dragos, C.A., Preitl, S., Precup, R.-E., et al.: Modern Control Solutions for Mechatronic Servosystems. Comparative Case Studies. In: Proceedings of 10th International Symposium of Hungarian Researchers on Computational Intelligence and Informatics (CINTI 2009), Budapest, Hungary, November 12-14, pp. 69–82 (2009)Google Scholar
  9. 9.
    Dragos, C.A., Preitl, S., Radac, M.B., Precup, R.-E.: Nonlinear and Linearized Models and Low Cost Control Solution for an Electromagnetic Actuator. In: Proceedings of 5th International Symposium on Applied Computational Intelligence and Informatics (SACI 2009), Timisoara, Romania, pp. 89–94 (2009)Google Scholar
  10. 10.
    Åström, K.J., Hägglund, T.: PID Controllers, Theory, Design and Tuning. In: Instrument Society of America, Research Triangle Park, NC, USA (1995)Google Scholar
  11. 11.
    Preitl, S., Precup, R.-E., Preitl, Z.: Control Algorithms and Structures, vol. 1, 2. Editura Orizonturi Universitare Publishers, Timisoara (2009) (in Romanian)Google Scholar
  12. 12.
    Tanaka, K., Wang, H.O.: Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach. John Wiley & Sons, New York (2001)Google Scholar
  13. 13.
    Coppier, H., Chadli, M., Bruey, S., et al.: Implementation of a Fuzzy Logic Control for a Silo’s Level Regulation in Stone Quarries. In: Preprints of 3rd IFAC Workshop on Advanced Fuzzy and Neural Control (AFNC 2007), Valenciennes, France, p. 6 (2007) CD-ROMGoogle Scholar
  14. 14.
    Blažič, S., Škrjanc, I.: Design and Stability Analysis of Fuzzy Model-based Predictive Control – A Case Study. J. Intell. Robot Syst. 49(3), 279–292 (2007)CrossRefGoogle Scholar
  15. 15.
    Kiencke, U., Nielsen, L.: Automotive Control Systems for Engine, Driveline and Vehicle, 2nd edn. Springer, New York (2005)Google Scholar
  16. 16.
    Cairano, S., Bemporad, A., Kolmanovsky, V., et al.: Model Predictive Control of Magnetically Actuated Mass Spring Dampers for Automotive Applications. Int. J. Control 80(11), 1701–1716 (2007)zbMATHCrossRefGoogle Scholar
  17. 17.
    Inteco Ltd., Magnetic Levitation System 2EM (MLS2EM), User’s Manual (laboratory set), Krakow, Poland (2008)Google Scholar
  18. 18.
    Research staff, Real-Time Informatics Technologies for Embedded-System-Control of Power-Train in Automotive Design and Applications (SICONA). Research Report of a CNMP Research Grant, “Gh. Asachi” Technical University of Iasi, Iasi, Romania (2009) (in Romanian)Google Scholar
  19. 19.
    Horváth, L., Rudas, I.J.: Modeling and Problem Solving Methods for Engineers. Academic Press, Elsevier (2004)Google Scholar
  20. 20.
    Baranyi, P.: TP Model Transformation as a Way to LMI-based Controller Design. IEEE Trans. Ind. Electron. 51(2), 387–400 (2004)CrossRefGoogle Scholar
  21. 21.
    Škrjanc, I., Blažič, S., Agamennoni, O.E.: Interval Fuzzy Modeling Applied to Wiener Models with Uncertainties. IEEE Trans. Syst. Man Cybern. B 35, 1092–1095 (2005)CrossRefGoogle Scholar
  22. 22.
    Johanyák, Z.C., Kovács, S.: Sparse Fuzzy System Generation by Rule Base Extension. In: Proceedings of 11th International Conference on Intelligent Engineering Systems (INES 2007), Budapest, Hungary, pp. 99–104 (2007)Google Scholar
  23. 23.
    Vaščák, J.: Navigation of Mobile Robots Using Potential Fields and Computational Intelligence Means. Acta Polytechnica Hungarica 4(1), 63–74 (2007)Google Scholar
  24. 24.
    Baranyi, P., Korondi, P., Tanaka, K.: Parallel-distributed Compensation-based Stabilization of a 3-DOF RC Helicopter: a Tensor Product Transformation-based Approach. J. Adv. Comput. Intell. Inform. 13(1), 25–34 (2009)Google Scholar
  25. 25.
    Ahn, H.K., Anh, H.P.H.: Inverse Double NARX Fuzzy Modeling for System Identification. IEEE/ASME Trans. Mechatronics 15(1), 136–148 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Claudia-Adina Dragoş
    • 1
  • Stefan Preitl
    • 1
  • Radu-Emil Precup
    • 1
  • Marian Creţiu
    • 1
  • János Fodor
    • 2
  1. 1.Department of Automation and Applied Informatics“Politehnica” University of TimişoaraTimişoaraRomania
  2. 2.Institute of Intelligent Engineering SystemsÓbuda UniversityBudapestHungary

Personalised recommendations