Representation Formulae for the Fractional Brownian Motion

Chapter
Part of the Lecture Notes in Mathematics book series (LNM, volume 2006)

Abstract

We discuss the relationships between some classical representations of the fractional Brownian motion, as a stochastic integral with respect to a standard Brownian motion, or as a series of functions with independent Gaussian coefficients. The basic notions of fractional calculus which are needed for the study are introduced. As an application, we also prove some properties of the Cameron–Martin space of the fractional Brownian motion, and compare its law with the law of some of its variants. Several of the results which are given here are not new; our aim is to provide a unified treatment of some previous literature, and to give alternative proofs and additional results; we also try to be as self-contained as possible.

Fractional Brownian motion Cameron-Martin space Laws of Gaussian processes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arcones, M.A.: On the law of the iterated logarithm for Gaussian processes. J. Theor. Probab. 8(4), 877–903 (1995)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Baudoin, F., Nualart, D.: Equivalence of Volterra processes. Stoch. Process. Appl. 107(2), 327–350 (2003)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bogachev, V.I.: Gaussian measures. Mathematical Surveys and Monographs, vol. 62. American Mathematical Society, Providence, RI (1998)Google Scholar
  4. 4.
    Cheridito, P.: Mixed fractional Brownian motion. Bernoulli 7(6), 913–934 (2001)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Cheridito, P., Kawaguchi, H., Maejima, M.: Fractional Ornstein–Uhlenbeck processes. Electron. J. Probab. 8(3), 14 (2003)MathSciNetGoogle Scholar
  6. 6.
    Coutin, L., Qian, Z.: Stochastic analysis, rough path analysis and fractional Brownian motions. Probab. Theory Relat. Field. 122(1), 108–140 (2002)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Darses, S., Saussereau, B.: Time reversal for drifted fractional Brownian motion with Hurst index H > 1 ∕ 2. Electron. J. Probab. 12(43), 1181–1211 (electronic) (2007)Google Scholar
  8. 8.
    Decreusefond, L., Üstünel, A.S.: Stochastic analysis of the fractional Brownian motion. Potential Anal. 10(2), 177–214 (1999)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Dzhaparidze, K., van Zanten, H.: A series expansion of fractional Brownian motion. Probab. Theory Relat. Field. 130(1), 39–55 (2004)MATHGoogle Scholar
  10. 10.
    Feldman, J.: Equivalence and perpendicularity of Gaussian processes. Pac. J. Math. 8, 699–708 (1958)MATHGoogle Scholar
  11. 11.
    Feyel, D., de La Pradelle, A.: On fractional Brownian processes. Potential Anal. 10(3), 273–288 (1999)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Gilsing, H., Sottinen, T.: Power series expansions for fractional Brownian motions. Theory Stoch. Process. 9(3-4), 38–49 (2003)MathSciNetGoogle Scholar
  13. 13.
    Gripenberg, G., Norros, I.: On the prediction of fractional Brownian motion. J. Appl. Probab. 33(2), 400–410 (1996)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Gross, L.: Abstract Wiener spaces. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability (Berkeley, California, 1965/66), vol. II: Contributions to Probability Theory, Part 1, pp. 31–42. University California Press, Berkeley, CA (1967)Google Scholar
  15. 15.
    Hájek, J.: On a property of normal distribution of any stochastic process. Czech. Math. J. 8(83), 610–618 (1958)Google Scholar
  16. 16.
    Hida, T., Hitsuda, M.: Gaussian processes. Translations of Mathematical Monographs, vol. 120. American Mathematical Society, Providence, RI (1993)Google Scholar
  17. 17.
    Iglói, E.: A rate-optimal trigonometric series expansion of the fractional Brownian motion. Electron. J. Probab. 10, 1381–1397 (2005)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Istas, J.: Spherical and hyperbolic fractional Brownian motion. Electron. Commun. Probab. 10, 254–262 (2005)MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Itô, K., Nisio, M.: On the convergence of sums of independent Banach space valued random variables. Osaka J. Math. 5, 35–48 (1968)MathSciNetMATHGoogle Scholar
  20. 20.
    Jost, C.: Transformation formulas for fractional Brownian motion. Stoch. Process. Appl. 116(10), 1341–1357 (2006)MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Jost, C.: A note on ergodic transformations of self-similar Volterra Gaussian processes. Electron. Commun. Probab. 12, 259–266 (2007)MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Jost, C.: On the connection between Molchan–Golosov and Mandelbrot–Van Ness representations of fractional Brownian motion. J. Integral Equat. Appl. 20(1), 93–119 (2008)MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Kakutani, S.: On equivalence of infinite product measures. Ann. Math. 49(2), 214–224 (1948)MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Kolmogorov, A.: Wienersche Spiralen und einige andere interessante Kurven im Hilbertschen Raum. Dokl. Akad. Nauk. SSSR 26, 115–118 (1940)Google Scholar
  25. 25.
    Lévy, P.: Sur une classe de courbes de l’espace de Hilbert et sur une équation intégrale non linéaire. Ann. Sci. Ecole Norm. Sup. 73(3), 121–156 (1956)MathSciNetMATHGoogle Scholar
  26. 26.
    Mandelbrot, B., Van Ness, J.W.: Fractional Brownian motions, fractional noises and applications. SIAM Rev. 10, 422–437 (1968)MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Marinucci, D., Robinson, P.M.: Alternative forms of fractional Brownian motion. J. Stat. Plan. Infer. 80(1–2), 111–122 (1999)MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Meyer, Y., Sellan, F., Taqqu, M.S.: Wavelets, generalized white noise and fractional integration: the synthesis of fractional Brownian motion. J. Fourier Anal. Appl. 5(5), 465–494 (1999)MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Molchan, G.M.: Linear problems for fractional Brownian motion: a group approach. Theor. Probab. Appl. 47(1), 69–78 (2003)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Molchan, G.M., Golosov, Y.I.: Gaussian stationary processes with asymptotically power spectrum (in Russian). Dokl. Akad. Nauk. SSSR 184, 546–549 (1969)MathSciNetGoogle Scholar
  31. 31.
    Norros, I., Saksman, E.: Local independence of fractional Brownian motion. Stoch. Process. Appl. 119, 3155—3172 (2009)MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    Norros, I., Valkeila, E., Virtamo, J.: An elementary approach to a Girsanov formula and other analytical results on fractional Brownian motions. Bernoulli 5(4), 571–587 (1999)MathSciNetMATHCrossRefGoogle Scholar
  33. 33.
    Picard, J.: A tree approach to p-variation and to integration. Ann. Probab. 36(6), 2235–2279 (2008)MathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    Pipiras, V., Taqqu, M.S.: Are classes of deterministic integrands for fractional Brownian motion on an interval complete? Bernoulli 7(6), 873–897 (2001)MathSciNetMATHCrossRefGoogle Scholar
  35. 35.
    Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives. Gordon and Breach Science Publishers, Yverdon (1993)MATHGoogle Scholar
  36. 36.
    van der Vaart, A.W., van Zanten, J.H.: Reproducing kernel Hilbert spaces of Gaussian priors. In: Pushing the Limits of Contemporary Statistics: Contributions in Honor of Jayanta K. Ghosh, Inst. Math. Stat. Collect., vol. 3, pp. 200–222. Inst. Math. Statist. Beachwood, OH (2008)Google Scholar
  37. 37.
    van Zanten, H.: When is a linear combination of independent fBm’s equivalent to a single fBm? Stoch. Process. Appl. 117(1), 57–70 (2007)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Laboratoire de MathématiquesClermont Université, Université Blaise Pascal and CNRS UMR 6620Clermont-FerrandFrance

Personalised recommendations