Advertisement

Untyping Typed Algebraic Structures and Colouring Proof Nets of Cyclic Linear Logic

  • Damien Pous
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6247)

Abstract

We prove ”untyping” theorems: in some typed theories (semirings, Kleene algebras, residuated lattices, involutive residuated lattices), typed equations can be derived from the underlying untyped equations. As a consequence, the corresponding untyped decision procedures can be extended for free to the typed settings. Some of these theorems are obtained via a detour through fragments of cyclic linear logic, and give rise to a substantial optimisation of standard proof search algorithms.

Keywords

Proof System Residuated Lattice Linear Logic Partial Algebra Equality Judgement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andreoli, J.-M.: Logic programming with focusing proofs in linear logic. Journal of Logic and Computation 2(3), 297–347 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bellin, G., Fleury, A.: Planar and braided proof-nets for MLL with mix. Archive for Mathematical Logic 37, 309–325 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Bellin, G., Scott, P.: On the π-calculus and linear logic. TCS 135, 11–65 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Braibant, T., Pous, D.: Coq library: ATBR, algebraic tools for binary relations (May 2009), http://sardes.inrialpes.fr/~braibant/atbr/
  5. 5.
    Braibant, T., Pous, D.: An efficient coq tactic for deciding Kleene algebras. In: Kaufmann, M., Paulson, L.C. (eds.) Interactive Theorem Proving. LNCS, vol. 6172, pp. 163–178. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    Burmeister, P.: Partial Algebra. In: Algebras and Orders. Kluwer Pub., Dordrecht (1993)Google Scholar
  7. 7.
    Diaconescu, R.: An encoding of partial algebras as total algebras. Information Processing Letters 109(23-24), 1245–1251 (2009)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Dojer, N.: Applying term rewriting to partial algebra theory. Fundamenta Informaticae 63(4), 375–384 (2004)zbMATHMathSciNetGoogle Scholar
  9. 9.
    Doornbos, H., Backhouse, R., van der Woude, J.: A calculational approach to mathematical induction. TCS 179(1-2), 103–135 (1997)zbMATHCrossRefGoogle Scholar
  10. 10.
    Freyd, P., Scedrov, A.: Categories, Allegories. North-Holland, Amsterdam (1990)zbMATHGoogle Scholar
  11. 11.
    Galatos, N., Jipsen, P., Kowalski, T., Ono, H.: Residuated lattices: an algebraic glimpse at substructural logics. Stud. in Log. and Found. of Math. 151, 532 (2007)MathSciNetGoogle Scholar
  12. 12.
    Girard, J.-Y.: Linear logic. TCS 50, 1–102 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Grégoire, B., Mahboubi, A.: Proving equalities in a commutative ring done right in Coq. In: Hurd, J., Melham, T. (eds.) TPHOLs 2005. LNCS, vol. 3603, pp. 98–113. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. 14.
    Harrison, J.: A HOL decision procedure for elementary real algebra. In: Joyce, J.J., Seger, C.-J.H. (eds.) HUG 1993. LNCS, vol. 780, pp. 426–435. Springer, Heidelberg (1994)Google Scholar
  15. 15.
    Jipsen, P.: Semirings to residuated Kleene lattices. Stud. Log. 76(2), 291–303 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Jipsen, P., Tsinakis, C.: A survey of residuated lattices. Ord. Alg. Struct. (2002)Google Scholar
  17. 17.
    Kanovich, M.: The complexity of neutrals in linear logic. In: Proc. LICS, pp. 486–495. IEEE, Los Alamitos (1995)Google Scholar
  18. 18.
    Kleene, S.C.: Representation of events in nerve nets and finite automata. In: Automata Studies, pp. 3–41. Princeton University Press, Princeton (1956)Google Scholar
  19. 19.
    Kozen, D.: A completeness theorem for Kleene algebras and the algebra of regular events. Information and Computation 110(2), 366–390 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Kozen, D.: Kleene algebra with tests. Trans. PLS 19(3), 427–443 (1997)Google Scholar
  21. 21.
    Kozen, D.: Typed Kleene algebra. Technical Report 98-1669, Cornell Univ. (1998)Google Scholar
  22. 22.
    Krob, D.: Complete systems of B-rational identities. TCS 89(2), 207–343 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Lambek, J.: The mathematics of sentence structure. American Mathematical Monthly 65, 154–170 (1958)zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Mossakowski, T.: Relating CASL with other specification languages: the institution level. TCS 286(2), 367–475 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Norrish, M.: Complete integer decision procedures as derived rules in HOL. In: Basin, D., Wolff, B. (eds.) TPHOLs 2003. LNCS, vol. 2758, pp. 71–86. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  26. 26.
    Okada, M., Terui, K.: The finite model property for various fragments of intuitionistic linear logic. Journal of Symbolic Logic 64(2), 790–802 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Ono, H., Komori, Y.: Logics without the contraction rule. Journal of Symbolic Logic 50(1), 169–201 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Pentus, M.: Lambek calculus is NP-complete. TCS 357(1-3), 186–201 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Pous, D.: Web appendix of this paper, http://sardes.inrialpes.fr/~pous/utas
  30. 30.
    Pratt, V.R.: Action logic and pure induction. In: van Eijck, J. (ed.) JELIA 1990. LNCS, vol. 478, pp. 97–120. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  31. 31.
    Regnier, L.: Lambda-calcul et réseaux. Thèse de doctorat, Univ. Paris VII (1992)Google Scholar
  32. 32.
    Wille, A.: A Gentzen system for involutive residuated lattices. Algebra Universalis 54, 449–463 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Yetter, D.: Quantales and (noncommutative) linear logic. Journal of Symbolic Logic 55(1), 41–64 (1990)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Damien Pous
    • 1
  1. 1.CNRS (LIG, UMR 5217) 

Personalised recommendations