The Isomorphism Problem for ω-Automatic Trees

  • Dietrich Kuske
  • Jiamou Liu
  • Markus Lohrey
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6247)

Abstract

The main result of this paper is that the isomorphism problem for ω-automatic trees of finite height is at least as hard as second-order arithmetic and therefore not analytical. This strengthens a recent result by Hjorth, Khoussainov, Montalbán, and Nies [9] showing that the isomorphism problem for ω-automatic structures is not \(\Sigma^1_2\). Moreover, assuming the continuum hypothesis CH, we can show that the isomorphism problem for ω-automatic trees of finite height is recursively equivalent with second-order arithmetic. On the way to our main results, we show lower and upper bounds for the isomorphism problem for ω-automatic trees of every finite height: (i) It is decidable (\(\Pi^0_1\)-complete, resp.) for height 1 (2, resp.), (ii) \(\Pi^1_1\)-hard and in \(\Pi^1_2\) for height 3, and (iii) \(\Pi^1_{n-3}\)- and \(\Sigma^1_{n-3}\)-hard and in \(\Pi^1_{2n-4}\) (assuming CH) for all n ≥ 4. All proofs are elementary and do not rely on theorems from set theory. Complete proofs can be found in [18].

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blumensath, A.: Automatic structures. Diploma thesis, RWTH Aachen (1999)Google Scholar
  2. 2.
    Blumensath, A., Grädel, E.: Finite presentations of infinite structures: Automata and interpretations. Theory of Computing Systems 37(6), 641–674 (2004)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Calvert, W., Knight, J.F.: Classification from a computable viewpoint. Bulletin of Symbolic Logic 12(2), 191–218 (2006)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Choueka, Y.: Theories of automata on ω-tapes: a simplified approach. Journal of Computer and System Sciences 8, 117–141 (1974)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Courcelle, B.: The definability of equational graphs in monadic second-order logic. In: Ronchi Della Rocca, S., Ausiello, G., Dezani-Ciancaglini, M. (eds.) ICALP 1989. LNCS, vol. 372, pp. 207–221. Springer, Heidelberg (1989)CrossRefGoogle Scholar
  6. 6.
    Finkel, O.: Highly undecidable problems for infinite computations. R.A.I.R.O. — Informatique Théorique et Applications 43(2), 339–364 (2009)MATHMathSciNetGoogle Scholar
  7. 7.
    Finkel, O., Todorčević, S.: The isomorphism relation between tree-autoamtic structures. Central European Journal of Mathematics 8(2), 299–313 (2010)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Goncharov, S.S., Knight, J.F.: Computable structure and antistructure theorems. Algebra Logika 41(6), 639–681 (2002)MATHMathSciNetGoogle Scholar
  9. 9.
    Hjorth, G., Khoussainov, B., Montalbán, A., Nies, A.: From automatic structures to Borel structures. In: Proc. LICS 2008, pp. 431–441. IEEE Computer Society, Los Alamitos (2008)Google Scholar
  10. 10.
    Ishihara, H., Khoussainov, B., Rubin, S.: Some results on automatic structures. In: Proc. LICS 2002, pp. 235–244. IEEE Computer Society, Los Alamitos (2002)Google Scholar
  11. 11.
    Kaiser, L., Rubin, S., Bárány, V.: Cardinality and counting quantifiers on omega-automatic structures. In: Proc. STACS 2008. LIPIcs, vol. 1, pp. 385–396. Schloss Dagstuhl–Leibniz-Zentrum für Informatik (2010)Google Scholar
  12. 12.
    Kechris, A.: Classical Descriptive Set Theory. Springer, Heidelberg (1995)MATHGoogle Scholar
  13. 13.
    Khoussainov, B., Nerode, A.: Automatic presentations of structures. In: Leivant, D. (ed.) LCC 1994. LNCS, vol. 960, pp. 367–392. Springer, Heidelberg (1995)Google Scholar
  14. 14.
    Khoussainov, B., Nies, A., Rubin, S., Stephan, F.: Automatic structures: richness and limitations. Logical Methods in Computer Science 3(2):2:2, 18 (electronic) (2007)Google Scholar
  15. 15.
    Khoussainov, B., Rubin, S., Stephan, F.: Automatic linear orders and trees. ACM Transactions on Computational Logic 6(4), 675–700 (2005)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Kuske, D.: Is Ramsey’s theorem ω-automatic? In: Proc. STACS 2010. LIPIcs, vol. 5, pp. 537–548. Schloss Dagstuhl–Leibniz-Zentrum für Informatik (2010)Google Scholar
  17. 17.
    Kuske, D., Liu, J., Lohrey, M.: The isomorphism problem on classes of automatic structures. In: Proc. LICS 2010. IEEE Computer Society, Los Alamitos (2010) (accepted for publication)Google Scholar
  18. 18.
    Kuske, D., Liu, J., Lohrey, M.: The isomorphism problem for ω-automatic trees, http://arxiv.org/abs/1004.0610
  19. 19.
    Kuske, D., Lohrey, M.: First-order and counting theories of omega-automatic structures. Journal of Symbolic Logic 73, 129–150 (2008)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Matiyasevich, Y.V.: Hilbert’s Tenth Problem. MIT Press, Cambridge (1993)Google Scholar
  21. 21.
    Odifreddi, P.: Classical recursion theory. Studies in Logic and the Foundations of Mathematics, vol. 125. North-Holland Publishing Co., Amsterdam (1989)MATHGoogle Scholar
  22. 22.
    Perrin, D., Pin, J.-E.: Infinite Words. In: Pure and Applied Mathematics, vol. 141. Elsevier, Amsterdam (2004)Google Scholar
  23. 23.
    Rubin, S.: Automatic Structures. PhD thesis, University of Auckland (2004)Google Scholar
  24. 24.
    Rubin, S.: Automata presenting structures: A survey of the finite string case. Bulletin of Symbolic Logic 14, 169–209 (2008)MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Thomas, W.: Automata on infinite objects. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, ch. 4, pp. 133–191. Elsevier Science Publishers B. V., Amsterdam (1990)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Dietrich Kuske
    • 1
  • Jiamou Liu
    • 2
  • Markus Lohrey
    • 2
  1. 1.Laboratoire Bordelais de Recherche en Informatique (LaBRI)CNRS and Université Bordeaux IBordeauxFrance
  2. 2.Institut für InformatikUniversität LeipzigGermany

Personalised recommendations