Advertisement

Energy and Mean-Payoff Games with Imperfect Information

  • Aldric Degorre
  • Laurent Doyen
  • Raffaella Gentilini
  • Jean-François Raskin
  • Szymon Toruńczyk
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6247)

Abstract

We consider two-player games with imperfect information and quantitative objective. The game is played on a weighted graph with a state space partitioned into classes of indistinguishable states, giving players partial knowledge of the state. In an energy game, the weights represent resource consumption and the objective of the game is to maintain the sum of weights always nonnegative. In a mean-payoff game, the objective is to optimize the limit-average usage of the resource. We show that the problem of determining if an energy game with imperfect information with fixed initial credit has a winning strategy is decidable, while the question of the existence of some initial credit such that the game has a winning strategy is undecidable. This undecidability result carries over to mean-payoff games with imperfect information. On the positive side, using a simple restriction on the game graph (namely, that the weights are visible), we show that these problems become EXPTIME-complete.

Keywords

Perfect Information Imperfect Information Winning Strategy Game Graph Quasi Order 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alur, R., Degorre, A., Maler, O., Weiss, G.: On omega-languages defined by mean-payoff conditions. In: de Alfaro, L. (ed.) FOSSACS 2009. LNCS, vol. 5504, pp. 333–347. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    Berwanger, D., Doyen, L.: On the power of imperfect information. In: Proc. of FSTTCS. Dagstuhl Seminar Proceedings 08004. IBFI (2008)Google Scholar
  3. 3.
    Bloem, R., Chatterjee, K., Henzinger, T.A., Jobstmann, B.: Better quality in synthesis through quantitative objectives. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 140–156. Springer, Heidelberg (2009)Google Scholar
  4. 4.
    Chaloupka, J., Brim, L.: Faster algorithm for mean-payoff games. In: Proc. of MEMICS: Math. and Engineering Methods in Comp. Science, pp. 45–53. Nov Press (2009)Google Scholar
  5. 5.
    Chatterjee, K., de Alfaro, L., Faella, M., Henzinger, T.A., Majumdar, R., Stoelinga, M.: Compositional quantitative reasoning. In: Proc. of QEST: Quantitative Evaluaiton of Systems, pp. 179–188. IEEE Computer Society, Los Alamitos (2006)Google Scholar
  6. 6.
    Chatterjee, K., Doyen, L., Henzinger, T.A.: Quantitative languages. In: Kaminski, M., Martini, S. (eds.) CSL 2008. LNCS, vol. 5213, pp. 385–400. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Chatterjee, K., Doyen, L., Henzinger, T.A., Raskin, J.-F.: Algorithms for omega-regular games of incomplete information. Logical Methods in Computer Science 3(3:4) (2007)Google Scholar
  8. 8.
    de Alfaro, L.: How to specify and verify the long-run average behavior of probabilistic systems. In: Proc. of LICS: Logic in Computer Science, pp. 454–465. IEEE Comp. Soc., Los Alamitos (1998)Google Scholar
  9. 9.
    Dickson, L.E.: Finiteness of the odd perfect and primitive abundant numbers with n distinct prime factors. Am. J. of Mathematics 35(4), 413–422 (1913)CrossRefGoogle Scholar
  10. 10.
    Doyen, L., Gentilini, R., Raskin, J.-F.: Faster pseudopolynomial algorithms for meanpayoff games. Technical Report 2009.120, Université Libre de Bruxelles (ULB), Belgium (2009)Google Scholar
  11. 11.
    Droste, M., Gastin, P.: Weighted automata and weighted logics. Th. C. Sci. 380(1-2), 69–86 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Ehrenfeucht, A., Mycielski, J.: International journal of game theory. Positional Strategies for Mean-Payoff Games 8, 109–113 (1979)zbMATHMathSciNetGoogle Scholar
  13. 13.
    Emerson, E.A., Jutla, C.: Tree automata, mu-calculus and determinacy. In: Proc. of FOCS, pp. 368–377. IEEE, Los Alamitos (1991)Google Scholar
  14. 14.
    Emerson, E.A., Jutla, C.S., Sistla, A.P.: On model-checking for fragments of μ-calculus. In: Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 385–396. Springer, Heidelberg (1993)Google Scholar
  15. 15.
    Esparza, J.: Decidability and complexity of Petri net problems - An introduction. In: Reisig, W., Rozenberg, G. (eds.) APN 1998. LNCS, vol. 1491, pp. 374–428. Springer, Heidelberg (1998)Google Scholar
  16. 16.
    Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere! Th. Comp. Sc. 256(1-2), 63–92 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games: A Guide to Current Research. LNCS, vol. 2500. Springer, Heidelberg (2002)zbMATHGoogle Scholar
  18. 18.
    Gurevich, Y., Harrington, L.: Trees, automata, and games. In: Proc. of STOC, pp. 60–65. ACM Press, New York (1982)Google Scholar
  19. 19.
    Krob, D.: The equality problem for rational series with multiplicities in the tropical semiring is undecidable. In: Kuich, W. (ed.) ICALP 1992. LNCS, vol. 623, pp. 101–112. Springer, Heidelberg (1992)Google Scholar
  20. 20.
    Kupferman, O., Lustig, Y.: Lattice automata. In: Cook, B., Podelski, A. (eds.) VMCAI 2007. LNCS, vol. 4349, pp. 199–213. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  21. 21.
    Minsky, N.M.: Finite and Infinite Machines. Prentice-Hall, Englewood Cliffs (1967)zbMATHGoogle Scholar
  22. 22.
    Rackoff, C.: The covering and boundedness problems for vector addition systems. Th. Comp. Sc. 6, 223–231 (1978)zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Reif, J.H.: The complexity of two-player games of incomplete information. Journal of Computer and System Sciences 29(2), 274–301 (1984)zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Zwick, U., Paterson, M.: The complexity of mean payoff games on graphs. Th. Comp. Sc. 158, 343–359 (1996)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Aldric Degorre
    • 1
  • Laurent Doyen
    • 2
  • Raffaella Gentilini
    • 3
  • Jean-François Raskin
    • 1
  • Szymon Toruńczyk
    • 2
  1. 1.Université Libre de Bruxelles (ULB)Belgium
  2. 2.LSV, ENS Cachan & CNRSFrance
  3. 3.University of PerugiaItaly

Personalised recommendations