Advertisement

Embedding Deduction Modulo into a Prover

  • Guillaume Burel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6247)

Abstract

Deduction modulo consists in presenting a theory through rewrite rules to support automatic and interactive proof search. It induces proof search methods based on narrowing, such as the polarized resolution modulo. We show how to combine this method with more traditional ordering restrictions. Interestingly, no compatibility between the rewriting and the ordering is requested to ensure completeness. We also show that some simplification rules, such as strict subsumption eliminations and demodulations, preserve completeness. For this purpose, we use a new framework based on a proof ordering. These results show that polarized resolution modulo can be integrated into existing provers, where these restrictions and simplifications are present. We also discuss how this integration can actually be done by diverting the main algorithm of state-of-the-art provers.

Keywords

Inference Rule Atomic Proposition Sequent Calculus Ground Term Empty Clause 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bachmair, L.: Proof normalization for resolution and paramodulation. In: Dershowitz, N. (ed.) RTA 1989. LNCS, vol. 355, pp. 15–28. Springer, Heidelberg (1989)Google Scholar
  2. 2.
    Bachmair, L., Ganzinger, H.: Rewrite-based equational theorem proving with selection and simplification. J. Log. Comput. 4(3), 217–247 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Burel, G., Dowek, G.: How can we prove that a proof search method is not an instance of another? In: LFMTP 2009. ACM International Conference Proceeding Series, pp. 84–87. ACM, New York (2009)CrossRefGoogle Scholar
  4. 4.
    Burel, G., Kirchner, C.: Regaining cut admissibility in deduction modulo using abstract completion. Inform. Comput. 208, 140–164 (2010)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Dowek, G.: What is a theory? In: Alt, H., Ferreira, A. (eds.) STACS 2002. LNCS, vol. 2285, pp. 50–64. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  6. 6.
    Dowek, G.: Truth values algebras and proof normalization. In: Altenkirch, T., McBride, C. (eds.) TYPES 2006. LNCS, vol. 4502, pp. 110–124. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Dowek, G.: Polarized resolution modulo (2010) (to be presented at IFIP TCS)Google Scholar
  8. 8.
    Dowek, G., Hardin, T., Kirchner, C.: HOL-λσ an intentional first-order expression of higher-order logic. Mathematical Structures in Computer Science 11(1), 1–25 (2001)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Dowek, G., Hardin, T., Kirchner, C.: Theorem proving modulo. Journal of Automated Reasoning 31(1), 33–72 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Dowek, G., Miquel, A.: Cut elimination for Zermelo’s set theory (2006), available on authors’ web pageGoogle Scholar
  11. 11.
    Dowek, G., Werner, B.: Proof normalization modulo. The Journal of Symbolic Logic 68(4), 1289–1316 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Dowek, G., Werner, B.: Arithmetic as a theory modulo. In: Giesl, J. (ed.) RTA 2005. LNCS, vol. 3467, pp. 423–437. Springer, Heidelberg (2005)Google Scholar
  13. 13.
    Goubault-Larrecq, J.: A note on the completeness of certain refinements of resolution. Research Report LSV-02-8, Laboratoire Spécification et Vérification, ENS Cachan, France (2002)Google Scholar
  14. 14.
    Hermant, O.: Méthodes Sémantiques en Déduction Modulo. Ph.D. thesis, École Polytechnique (2005)Google Scholar
  15. 15.
    Hermant, O.: Resolution is cut-free. Journal of Automated Reasoning 44(3), 245–276 (2009)CrossRefGoogle Scholar
  16. 16.
    Joiner Jr., W.H.: Resolution strategies as decision procedures. J. ACM 23(3), 398–417 (1976)CrossRefGoogle Scholar
  17. 17.
    Plotkin, G.: Building in equational theories. In: Meltzer, B., Michie, D. (eds.) Machine Intelligence, vol. 7, pp. 73–90. Edinburgh University Press, Edinburgh (1972)Google Scholar
  18. 18.
    Sutcliffe, G., Benzmüller, C., Brown, C.E., Theiss, F.: Progress in the development of automated theorem proving for higher-order logic. In: Schmidt, R.A. (ed.) Automated Deduction – CADE-22. LNCS, vol. 5663, pp. 116–130. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  19. 19.
    Wos, L., Robinson, G.A., Carson, D.F.: Efficiency and completeness of the set of support strategy in theorem proving. J. ACM 12(4), 536–541 (1965)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Guillaume Burel
    • 1
  1. 1.Max Planck Institute for InformaticsSaarland UniversitySaarbrückenGermany

Personalised recommendations