A Model of Symmetry Breaking in Collective Decision-Making

  • Heiko Hamann
  • Bernd Meyer
  • Thomas Schmickl
  • Karl Crailsheim
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6226)

Abstract

Symmetry breaking is commonly found in self-organized collective decision making. It serves an important functional role, specifically in biological and bio-inspired systems. The analysis of symmetry breaking is thus an important key to understanding self-organized decision making. However, in many systems of practical importance available analytic methods cannot be applied due to the complexity of the scenario and consequentially the model. This applies specifically to self-organization in bio-inspired engineering. We propose a new modeling approach which allows us to formally analyze important properties of such processes. The core idea of our approach is to infer a compact model based on stochastic processes for a one-dimensional symmetry parameter. This enables us to analyze the fundamental properties of even complex collective decision making processes via Fokker–Planck theory. We are able to quantitatively address the effectiveness of symmetry breaking, the stability, the time taken to reach a consensus, and other parameters. This is demonstrated with two examples from swarm robotics.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Camazine, S., Deneuenbourg, J.L., Franks, N.R., Sneyd, J., Theraulaz, G., Bonabeau, E.: Self-Organization in Biological Systems. Princeton Univ. P., Princeton (2001)Google Scholar
  2. 2.
    Franks, N.R., Mallon, E.B., Bray, H.E., Hamilton, M.J., Mischler, T.C.: Strategies for choosing between alternatives with different attributes: exemplified by house-hunting ants. Animal Behavior 65, 215–223 (2003)CrossRefGoogle Scholar
  3. 3.
    Dussutour, A., Beekman, M., Nicolis, S.C., Meyer, B.: Noise improves collective decision-making by ants in dynamic environments. Proceedings of the Royal Society London B 276, 4353–4361 (2009)CrossRefGoogle Scholar
  4. 4.
    Meyer, B., Beekman, M., Dussutour, A.: Noise-induced adaptive decision-making in ant-foraging. In: Asada, M., Hallam, J.C.T., Meyer, J.-A., Tani, J. (eds.) SAB 2008. LNCS (LNAI), vol. 5040, pp. 415–425. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    Kernbach, S., Thenius, R., Kornienko, O., Schmickl, T.: Re-embodiment of honeybee aggregation behavior in an artificial micro-robotic swarm. Adaptive Behaviour 17, 237–259 (2009)CrossRefGoogle Scholar
  6. 6.
    Reading, N.C., Sperandio, V.: Quorum sensing: the many languages of bacteria. FEMS Microbiol. Lett. 254(1), 1–11 (2006)CrossRefGoogle Scholar
  7. 7.
    Weisbuch, G., Stauffer, D.: Hits and flops dynamics. Physica A 287, 563–576 (2000)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Vicsek, T.: A question of scale. Nature 411, 421 (2001)CrossRefGoogle Scholar
  9. 9.
    Jeanson, R., Deneubourg, J.L., Grimal, A., Theraulaz, G.: Modulation of individual behavior and collective decision-making during aggregation site selection by the ant messor barbarus. Behav. Ecol. Sociobiol. 55, 388–394 (2004)CrossRefGoogle Scholar
  10. 10.
    Garnier, S., Gautrais, J., Theraulaz, G.: The biological principles of swarm intelligence. Swarm Intelligence 1, 3–31 (2007)CrossRefGoogle Scholar
  11. 11.
    Nicolis, S.C., Deneubourg, J.L.: Emerging patterns and food recruitment in ants: an analytical study. Journal of Theoretical Biology 198, 575–592 (1999)CrossRefGoogle Scholar
  12. 12.
    Hamann, H., Schmickl, T., Wörn, H., Crailsheim, K.: Analysis of emergent symmetry breaking in collective decision making. Neural Comp. & Appl. (2010) (in Press)Google Scholar
  13. 13.
    Schmickl, T., Thenius, R., Möslinger, C., Radspieler, G., Kernbach, S., Crailsheim, K.: Get in touch: Cooperative decision making based on robot-to-robot collisions. Autonomous Agents and Multi-Agent Systems 18(1), 133–155 (2008)CrossRefGoogle Scholar
  14. 14.
    Schmickl, T., Hamann, H.: BEECLUST: A swarm algorithm derived from honeybees. In: Xiao, Y., Hu, F. (eds.) Bio-inspired Computing and Communication Networks. Routledge, New York (August 2010)Google Scholar
  15. 15.
    Hamann, H., Wörn, H.: Embodied computation. Parallel Processing Letters 17(3), 287–298 (2007)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Gardiner, C.W.: Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences. Springer, Heidelberg (1985)Google Scholar
  17. 17.
    Hamann, H., Wörn, H., Crailsheim, K., Schmickl, T.: Spatial macroscopic models of a bio-inspired robotic swarm algorithm. In: IEEE/RSJ 2008 Int. Conf. on Intel. Robots and Syst. (IROS 2008), pp. 1415–1420. IEEE Press, Los Alamitos (2008)CrossRefGoogle Scholar
  18. 18.
    Packard, N.H.: Adaptation toward the edge of chaos. In: Dynamic Patterns in Complex Systems, pp. 293–301. World Scientific, Singapore (1988)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Heiko Hamann
    • 1
  • Bernd Meyer
    • 2
  • Thomas Schmickl
    • 1
  • Karl Crailsheim
    • 1
  1. 1.Artificial Life Lab of the Dep. of ZoologyKarl-Franzens UniversityGrazAustria
  2. 2.FIT Centre for Research in Intelligent SystemsMonash UniversityMelbourne

Personalised recommendations