Taming the Beast: Guided Self-organization of Behavior in Autonomous Robots

  • Georg Martius
  • J. Michael Herrmann
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6226)

Abstract

Self-organizing processes are crucial for the development of living beings. Practical applications in robots may benefit from the self-organization of behavior, e.g. for the increased fault tolerance and enhanced flexibility provided that external goals can also be achieved. We present several methods for the guidance of self-organizing control by externally prescribed criteria. We show that the degree of self-organized explorativity of the robot can be regulated and that problem-specific error functions, hints, or abstract symbolic descriptions of a goal can be reconciled with the continuous robot dynamics.

References

  1. 1.
    Der, R., Hesse, F., Martius, G.: Rocking stamper and jumping snake from a dynamical system approach to artificial life. Adapt. Beh. 14, 105–115 (2006)CrossRefGoogle Scholar
  2. 2.
    Hesse, F., Martius, G., Der, R., Herrmann, J.M.: A sensor-based learning algorithm for the self-organization of robot behavior. Algorithms 2(1), 398–409 (2009)CrossRefGoogle Scholar
  3. 3.
    Stefano, N.: Behaviour as a complex adaptive system: On the role of self-organization in the development of individual and collective behaviour. ComplexUs 2(3-4), 195–203 (2006)Google Scholar
  4. 4.
    Tani, J.: Learning to generate articulated behavior through the bottom-up and the top-down interaction processes. Neural Networks 16(1), 11–23 (2003)CrossRefGoogle Scholar
  5. 5.
    Martius, G., Herrmann, J.M., Der, R.: Guided self-organisation for autonomous robot development. In: Almeida e Costa, F., Rocha, L.M., Costa, E., Harvey, I., Coutinho, A. (eds.) ECAL 2007. LNCS (LNAI), vol. 4648, pp. 766–775. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Prokopenko, M.: Guided self-organization. HFSP Journal 3(5), 287–289 (2009)CrossRefGoogle Scholar
  7. 7.
    Der, R.: Self-organized acquisition of situated behavior. Theory in Biosciences 120, 179–187 (2001)Google Scholar
  8. 8.
    Jordan, M.I., Rumelhart, D.E.: Forward models: Supervised learning with a distal teacher. Cognitive Science 16(3), 307–354 (1992)CrossRefGoogle Scholar
  9. 9.
    Nolfi, S., Floreano, D.: Learning and evolution. Auton. Robots 7(1), 89–113 (1999)CrossRefGoogle Scholar
  10. 10.
    Di Paolo, E.: Organismically-inspired robotics: Homeostatic adaptation and natural teleology beyond the closed sensorimotor loop. In: Murase, K., Asakura, T. (eds.) Dyn. Systems Approach to Embodiment and Sociality, pp. 19–42 (2003)Google Scholar
  11. 11.
    Williams, H.: Homeostatic plasticity in recurrent neural networks. In: Schaal, S., Ispeert, A. (eds.) From Animals to Animats: Proc. 8th Intl. Conf. on Simulation of Adaptive Behavior, vol. 8. MIT Press, Cambridge (2004)Google Scholar
  12. 12.
    Der, R., Martius, G.: From motor babbling to purposive actions: Emerging self-exploration in a dynamical systems approach to early robot development. In: Nolfi, S., Baldassarre, G., Calabretta, R., Hallam, J.C.T., Marocco, D., Meyer, J.-A., Miglino, O., Parisi, D. (eds.) SAB 2006. LNCS (LNAI), vol. 4095, pp. 406–421. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Der, R., Martius, G., Hesse, F., Güttler, F.: Videos of self-organized behavior in autonomous robots (2009), http://robot.informatik.uni-leipzig.de/videos
  14. 14.
    Prokopenko, M., Zeman, A., Li, R.: Homeotaxis: Coordination with persistent time-loops. In: Asada, M., Hallam, J.C.T., Meyer, J.-A., Tani, J. (eds.) SAB 2008. LNCS (LNAI), vol. 5040, pp. 403–414. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  15. 15.
    Martius, G., Hesse, F., Güttler, F., Der, R.: LpzRobots: A free and powerful robot simulator (2009), http://robot.informatik.uni-leipzig.de/software
  16. 16.
    Nolfi, S., Floreano, D.: Evolutionary Robotics. In: The Biology, Intelligence, and Technology of Self-organizing Machines. MIT Press, Cambridge (2001); 1st Print (2000), 2nd Print (2001)Google Scholar
  17. 17.
    Sutton, R.S., Barto, A.G.: Reinforcement learning: Past, present and future. In: SEAL, pp. 195–197 (1998)Google Scholar
  18. 18.
    de Margerie, E., Mouret, J.B., Doncieux, S., Meyer, J.A.: Artificial evolution of the morphology and kinematics in a flapping-wing mini UAV. Bioinspiration and Biomimetics 2, 65–82 (2007)CrossRefGoogle Scholar
  19. 19.
    Ijspeert, A.J., Hallam, J., Willshaw, D.: Evolving Swimming Controllers for a Simulated Lamprey with Inspiration from Neurobiology. Adaptive Behavior 7(2), 151–172 (1999)CrossRefGoogle Scholar
  20. 20.
    Mazzapioda, M.G., Nolfi, S.: Synchronization and gait adaptation in evolving hexapod robots. In: Nolfi, S., Baldassarre, G., Calabretta, R., Hallam, J.C.T., Marocco, D., Meyer, J.-A., Miglino, O., Parisi, D. (eds.) SAB 2006. LNCS (LNAI), vol. 4095, pp. 113–125. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  21. 21.
    Peters, J., Vijayakumar, S., Schaal, S.: Natural Actor-Critic. In: Gama, J., Camacho, R., Brazdil, P.B., Jorge, A.M., Torgo, L. (eds.) ECML 2005. LNCS (LNAI), vol. 3720, pp. 280–291. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  22. 22.
    Peters, J., Schaal, S.: Natural Actor-Critic. Neurocomputing 71(7-9), 1180–1190 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Georg Martius
    • 1
    • 2
    • 3
  • J. Michael Herrmann
    • 1
    • 2
    • 4
  1. 1.Bernstein Center for Computational Neuroscience GöttingenGöttingenGermany
  2. 2.Institute for Nonlinear DynamicsUniversity of GöttingenGöttingenGermany
  3. 3.Max Planck Institute for Dynamics and Self-OrganizationGöttingenGermany
  4. 4.School of Informatics, IPABUniversity of EdinburghEdinburghU.K.

Personalised recommendations