Distributed Online Learning of Central Pattern Generators in Modular Robots

  • David Johan Christensen
  • Alexander Spröwitz
  • Auke Jan Ijspeert
Conference paper

DOI: 10.1007/978-3-642-15193-4_38

Part of the Lecture Notes in Computer Science book series (LNCS, volume 6226)
Cite this paper as:
Christensen D.J., Spröwitz A., Ijspeert A.J. (2010) Distributed Online Learning of Central Pattern Generators in Modular Robots. In: Doncieux S., Girard B., Guillot A., Hallam J., Meyer JA., Mouret JB. (eds) From Animals to Animats 11. SAB 2010. Lecture Notes in Computer Science, vol 6226. Springer, Berlin, Heidelberg

Abstract

In this paper we study distributed online learning of locomotion gaits for modular robots. The learning is based on a stochastic approximation method, SPSA, which optimizes the parameters of coupled oscillators used to generate periodic actuation patterns. The strategy is implemented in a distributed fashion, based on a globally shared reward signal, but otherwise utilizing local communication only. In a physics-based simulation of modular Roombots robots we experiment with online learning of gaits and study the effects of: module failures, different robot morphologies, and rough terrains. The experiments demonstrate fast online learning, typically 5-30 min. for convergence to high performing gaits (≈ 30 cm/sec), despite high numbers of open parameters (45-54). We conclude that the proposed approach is efficient, effective and a promising candidate for online learning on many other robotic platforms.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • David Johan Christensen
    • 1
  • Alexander Spröwitz
    • 2
  • Auke Jan Ijspeert
    • 2
  1. 1.The Maersk Mc-Kinney Moller InstituteUniversity of Southern Denmark 
  2. 2.Biorobotics LaboratoryEcole Polytechnique Fédérale de LausanneSwitzerland

Personalised recommendations