A Supramodal Vibrissa Tactile and Auditory Model for Texture Recognition

  • Mathieu Bernard
  • Steve N’Guyen
  • Patrick Pirim
  • Agnès Guillot
  • Jean-Arcady Meyer
  • Bruno Gas
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6226)


Audition and touch endow spectral processing abilities allowing texture recognition and discrimination. Rat whiskers sensory system exhibits, as the cochlea, resonance property decomposing the signal over frequencies. Moreover, there exists strong psychophysical and biological interactions between auditory and somatosensory corteces concerning texture analysis. Inspired by these similarities, this paper introduce a ”supramodal” model allowing both vibrissa tactile and auditory texture recognition. Two gammatone based resonant filterbanks are used for cochlea and whiskers array modeling. Each filterbank is then linked to a feature extraction algorithm, inspired by data recorded in the rats barrel cortex, and finally to a multilayer perceptron. Results clearly show the ability of the model for texture recognition in both auditory and tactile tuning. Moreover, recent studies suggest that this resonance property plays a role in texture discrimination. Experiments presented here provide elements in the direction of this resonance hypothesis.


Basilar Membrane Resonance Property Texture Recognition Feature Extraction Algorithm Texture Discrimination 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lederman, S.J.: Auditory texture perception. Perception 8, 93–103 (1979)CrossRefGoogle Scholar
  2. 2.
    Carvell, G.E., Simons, D.J.: Biometric analyses of vibrissal tactile discrimination in the rat. J. Neurosci. 10(8), 2638–2648 (1990)Google Scholar
  3. 3.
    Brecht, M., Preilowski, B., Merzenich, M.M.: Functional architecture of the mystacial vibrissae. Behav. Brain Res. 84, 81–97 (1997)CrossRefGoogle Scholar
  4. 4.
    Neimark, M.A., Andermann, M., Hopfield, J., Moore, C.: Vibrissa resonance as a transduction mechanism for tactile encoding. J. Neurosci. 23(16), 6499–6509 (2003)Google Scholar
  5. 5.
    Hartmann, M.J., Johnson, N.J., Towal, R.B., Assad, C.: Mechanical characteristics of rat vibrissae: Resonant frequencies and damping in isolated whiskers and in the awake behaving animal. J. Neurosci. 23(16), 6510–6519 (2003)Google Scholar
  6. 6.
    Andermann, M., Moore, C.: Mechanical resonance enhances the sensitivity of the vibrissa sensory system to near-threshold stimuli. Brain Res. 1235, 74–81 (2008)CrossRefGoogle Scholar
  7. 7.
    Warren, R.M.: Auditory Perception: An Analysis and Synthesis. Cambridge University Press, Cambridge (2008)CrossRefGoogle Scholar
  8. 8.
    Arabzadeh, E., Panzeri, S., Diamond, M.E.: Whisker vibration information carried by rat barrel cortex neurons. J. Neurosci. 24(26), 6011–6020 (2004)CrossRefGoogle Scholar
  9. 9.
    Foxe, J.J.: Multisensory integration: frequency tuning of audio-tactile integration. Curr. Biol. 19(9), R373–R375 (2009)CrossRefGoogle Scholar
  10. 10.
    Yau, J.M., Olenczak, J.B., Dammann, J.F., Bensmaia, S.J.: Temporal frequency channels are linked across audition and touch. Curr. Biol. 19(7), 561–566 (2009)CrossRefGoogle Scholar
  11. 11.
    Yau, J.M., Hollins, M., Bensmaia, S.J.: Textural timbre: the perception of surface microtexture depends in part on multimodal spectral cues. Commun. Integr. Biol. 2(4), 1–3 (2009)Google Scholar
  12. 12.
    Patterson, R., Robinson, K., Holdsworth, J., McKeown, D., Zhang, C., Allerhand, M.: Complex sounds and auditoty images. In: Auditory Physiology and Perception, Proc. 9th Int. Symp. on Hearing (1992)Google Scholar
  13. 13.
    Givelberg, E., Bunn, J.: A comprehensive three-dimensional model of the cochlea. J. Comput. Phys. 191(2), 377–391 (2003)MATHCrossRefGoogle Scholar
  14. 14.
    Lyon, R.: A computational model of filtering, detection, and compression in the cochlea. In: IEEE Int Conf. of Acoustics, Speech, and Signal Processing, pp. 1282–1285 (1982)Google Scholar
  15. 15.
    Fend, M., Bovet, S., Yokoi, H., Pfeifer, R.: An active artificial whisker array for texture discrimination. In: IROS IEEE/RSJ Int. Conf., pp. 1044–1049 (2003)Google Scholar
  16. 16.
    N’Guyen, S., Pirim, P., Meyer, J.-A.: Tactile texture discrimination in the robot-rat psikharpax. In: BIOSIGNALS 2010, 3rd Int. Conf. on Bio-Inspired Systems and Signal Processing, Valencia, Spain (2010)Google Scholar
  17. 17.
    Pearson, M.J., Pipe, A.G., Melhuish, C., Mitchinson, B., Prescott, T.J.: Whiskerbot: A robotic active touch system modeled on the rat whisker sensory system. Adapt. Behav. 15, 223–240 (2007)CrossRefGoogle Scholar
  18. 18.
    Slaney, M.: An efficient implementation of the patterson-holdsworth auditory filter bank. Technical report, Apple Computer Technical Report 35 (1993)Google Scholar
  19. 19.
    Glasberg, B., Moore, B.: Derivation of auditory filter shapes from notched-noise data. Hear. Res. 47, 103–138 (1990)CrossRefGoogle Scholar
  20. 20.
    Andermann, M., Ritt, J., Neimark, M.A., Moore, C.: Neural correlates of vibrissa resonance: Band-pass and somatotopic representation of high-frequency stimuli. Neuron 42, 451–463 (2004)CrossRefGoogle Scholar
  21. 21.
    Licklider, J.C., Pollack, I.: Effects of differentiation, integration and infinite peak clipping upon the intelligibility of speech. Am. Acoust. Soc. J. 20(1), 42–51 (1948)CrossRefGoogle Scholar
  22. 22.
    N’Guyen, S., Pirim, P., Meyer, J.-A.: Elastomer-based tactile sensor array for the artificial rat psikharpax. In: ISEF 2009 - XIV Int. Symp. on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering (2009)Google Scholar
  23. 23.
    Petersen, R.S., Diamond, M.E.: Spatial-temporal distribution of whisker-evoked activity in rat somatosensory cortex and the coding of stimulus location. J. Neurosci. 20(16), 6135–6143 (2000)Google Scholar
  24. 24.
    Nissen, S.: Implementation of a fast artificial neural network library. Technical report, Department of Computer Science University of Copenhagen (2003)Google Scholar
  25. 25.
    Igel, C., Hüskel, M.: Improving the rprop learning algorithm. In: Second International Symposium on Neural Computation, pp. 115–121 (2000)Google Scholar
  26. 26.
    Meyer, J.-A., Guillot, A., Girard, B., Khamassi, M., Pirim, P., Berthoz, A.: The Psikharpax project: Towards building an artificial rat. Robot Auton. Syst. 50(4), 211–223 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Mathieu Bernard
    • 1
    • 2
  • Steve N’Guyen
    • 1
    • 2
  • Patrick Pirim
    • 2
  • Agnès Guillot
    • 1
  • Jean-Arcady Meyer
    • 1
  • Bruno Gas
    • 1
  1. 1.Institut des Systèmes Intelligents et de RobotiqueUPMC Paris 6, CNRS UMR 7222Paris cedex 05France
  2. 2.Brain Vision SystemsParisFrance

Personalised recommendations