Tactile Discrimination Using Template Classifiers: Towards a Model of Feature Extraction in Mammalian Vibrissal Systems

  • Mathew H. Evans
  • Charles W. Fox
  • Martin J. Pearson
  • Tony J. Prescott
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6226)

Abstract

Rats and other whiskered mammals are capable of making sophisticated sensory discriminations using tactile signals from their facial whiskers (vibrissae). As part of a programme of work to develop biomimetic technologies for vibrissal sensing, including whiskered robots, we are devising algorithms for the fast extraction of object parameters from whisker deflection data. Previous work has demonstrated that radial distance to contact can be estimated from forces measured at the base of the whisker shaft. We show that in the case of a moving object contacting a whisker, the measured force can be ambiguous in distinguishing a nearby object moving slowly from a more distant object moving rapidly. This ambiguity can be resolved by simultaneously extracting object position and speed from the whisker deflection time series – that is by attending to the dynamics of the whisker’s interaction with the object. We compare a simple classifier with an adaptive EM (Expectation Maximisation) classifier. Both systems are effective at simultaneously extracting the two parameters, the EM-classifier showing similar performance to a handpicked template classifier. We propose that adaptive classification algorithms can provide insights into the types of computations performed in the rat vibrissal system when the animal is faced with a discrimination task.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anjum, F., Turni, H., Mulder, P.G.H., van der Burg, J., Brecht, M.: Tactile guidance of prey capture in etruscan shrews. Proc. Natl. Acad. Sci. USA 103(44), 16544–16549 (2006)CrossRefGoogle Scholar
  2. 2.
    Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the em algorithm. Journal of the Royal Statistical Society. Series B (Methodological) 39(1), 1–38 (1977)MATHMathSciNetGoogle Scholar
  3. 3.
    Birdwell, J.A., Solomon, J.H., Thajchayapong, M., Taylor, M.A., Cheely, M., Towal, R.B., Conradt, J., Hartmann, M.J.Z.: Biomechanical models for radial distance determination by the rat vibrissal system. J. Neurophysiol. 98(4), 2439–2455 (2007)CrossRefGoogle Scholar
  4. 4.
    Carvell, G.E., Simons, D.J.: Biometric analyses of vibrissal tactile discrimination in the rat. J. Neurosci. 10(8), 2638–2648 (1990)Google Scholar
  5. 5.
    Dehnhardt, G., Ducker, G.: Tactual discrimination of size and shape by a california sea lion (zalophus californianus). Animal Learning and Behavior 24(4), 366–374 (1996)Google Scholar
  6. 6.
    Evans, M., Fox, C.W., Pearson, M.J., Prescott, T.J.: Spectral template based classification of robotic whisker sensor signals in a floor texture discrimination task. In: Kyriacou, T., Nehmzow, U., Melhuish, C., Witkowski, M. (eds.) Proceedings of Towards Autonomous Robotic Systems (TAROS 2009), pp. 19–24 (2009)Google Scholar
  7. 7.
    Ferezou, I., Bolea, S., Petersen, C.C.H.: Visualizing the cortical representation of whisker touch: voltage-sensitive dye imaging in freely moving mice. Neuron. 50(4), 617–629 (2006)CrossRefGoogle Scholar
  8. 8.
    Fox, C., Evans, M., Pearson, M., Prescott, T.J.: Towards temporal inference for shape recognition from whiskers. In: Ramamoorthy, S., Hayes, G.M. (eds.) Towards Autonomous Robotic Systems, pp. 226–233 (2008)Google Scholar
  9. 9.
    Fox, C.W., Mitchinson, B., Pearson, M.J., Pipe, A.G., Prescott, T.J.: Contact type dependency of texture classification in a whiskered mobile robot. Autonomous Robots (2009)Google Scholar
  10. 10.
    Kaneko, M., Kanayama, N., Tsuji, T.: Active antenna for contact sensing. IEEE Transactions on Robotics and Automation 14(2), 278–291 (1998)CrossRefGoogle Scholar
  11. 11.
    Kim, D., Moller, R.: Biomimetic whiskers for shape recognition. Robotics and Autonomous Systems 55, 229–243 (2007)MATHCrossRefGoogle Scholar
  12. 12.
    Kleinfeld, D., Ahissar, E., Diamond, M.E.: Active sensation: insights from the rodent vibrissa sensorimotor system. Curr. Opin. Neurobiol. 16(4), 435–444 (2006)CrossRefGoogle Scholar
  13. 13.
    Lepora, N.F., Evans, M., Fox, C.W., Diamond, M.E., Gurney, K., Prescott, T.J.: Naive bayes texture classification applied to whisker data from a moving robot. In: World Congress on Computational Intelligence (submitted 2010)Google Scholar
  14. 14.
    Mitchinson, B., Martin, C.J., Grant, R.A., Prescott, T.J.: Feedback control in active sensing: rat exploratory whisking is modulated by environmental contact. Proc. Biol. Sci. 274(1613), 1035–1041 (2007)CrossRefGoogle Scholar
  15. 15.
    Pearson, M.J., Mitchinson, B., Welsby, J., Pipe, T.G., Prescott, T.J.: Scratchbot: Active tactile sensing in a whiskered mobile robot. Submitted to SAB (2010)Google Scholar
  16. 16.
    Prescott, T.J., Pearson, M.J., Mitchinson, B., Sullivan, J.C.W., Pipe, A.G.: Whisking with robots from rat vibrissae to biomimetic technology for active touch. IEEE Robotics and Automation Magazine 16(3), 42–50 (2009)CrossRefGoogle Scholar
  17. 17.
    Ullman, S., Vidal-Naquet, M., Sali, E.: Visual features of intermediate complexity and their use in classification. Nat. Neurosci. 5(7), 682–687 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Mathew H. Evans
    • 1
  • Charles W. Fox
    • 1
  • Martin J. Pearson
    • 2
  • Tony J. Prescott
    • 1
  1. 1.Active Touch Laboratory, Psychology DepartmentWestern BankSheffieldUK
  2. 2.Bristol Robotics LaboratoryBristolUK

Personalised recommendations