Multimodal Predictive Control in Crickets

  • Mark Payne
  • Berthold Hedwig
  • Barbara Webb
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6226)


A combination of behavioural testing and robotic modelling was used to investigate the interaction between sound localisation (phonotaxis) and optomotor following in crickets. Three hypotheses describing simple interactions — summation, gain modulation and chaining — were eliminated, leaving efference copy as the most likely mechanism. A speculative but plausible model for predicting re-afference was implemented and evaluated on a robot.


Efference Copy Simple Summation Calling Song Optomotor Response Female Cricket 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    von Holst, E.: The Behavioural Physiology of Animals and Man. Methuen, London (1973)Google Scholar
  2. 2.
    Egelhaaf, M.: Dynamic Properties of two Control Systems underlying Visually Guided Turning in House-Flies. J. Comp. Physiol. A 161, 777–783 (1987)CrossRefGoogle Scholar
  3. 3.
    Webb, B., Harrison, R.: Integrating Sensorimotor Systems in a Robot Model of Cricket Behaviour. SPIE 4196, 113–124 (2000)CrossRefGoogle Scholar
  4. 4.
    Webb, B., Reeve, R.: Reafferent or Redundant: Integration of Phonotaxis and Optomotor Behaviour in Crickets and Robots. Adaptive Behavior 11(3), 137–158 (2003)CrossRefGoogle Scholar
  5. 5.
    Collett, T.: Angular Tracking and the Optomotor Response: An Analysis of Visual Reflex Interaction in a Hoverfly. J. Comp. Physiol. A 140, 145–158 (1980)CrossRefGoogle Scholar
  6. 6.
    Hedwig, B., Poulet, J.: Mechanisms Underlying Phonotactic Steering in the Cricket Gryllus Bimaculatus Revealed with a Fast Trackball System. J. Exp. Biol. 208, 915–927 (2005)CrossRefGoogle Scholar
  7. 7.
    Lund, H., Webb, B., Hallam, J.: A Robot Attracted to the Cricket Species Gryllus bimaculatus. In: 4th European Conference on Artificial Life, pp. 246–255. MIT Press/Bradford Books (1997)Google Scholar
  8. 8.
    Huber, S., Bülthoff, H.: Simulation and Robot Implementation of Visual Orientation Behaviour of Flies. In: From Animals to Animats, vol. 5, pp. 77–85. MIT Press, Cambridge (1998)Google Scholar
  9. 9.
    Harrison, R., Koch, C.: A Silicon Implementation of the Fly’s Optomotor Control System. Neural Computation 12, 2291–2304 (2000)CrossRefGoogle Scholar
  10. 10.
    Hassenstein, B., Reichardt, W.: Systemtheoretische Analyse der Zeit-, Reihenfolgen-, und Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkäfers Chlorophanus. Z. Naturforschung 11(b), 513–524 (1956)Google Scholar
  11. 11.
    Payne, M.: Co-ordinating Behaviours in an Insect Biorobot. Unpublished Ph.D. Thesis, University of Edinburgh, UK (2010)Google Scholar
  12. 12.
    Böhm, H., Schildberger, K., Huber, F.: Visual and Acoustic Control in the Cricket Gryllus bimaculatus. J. Exp. Biol. 159, 235–248 (1991)Google Scholar
  13. 13.
    Maass, W., Natschläger, T.: Real-Time Computation Without Stable States: A New Framework for Neural Computation Based on Perturbations. Neural Computation 14, 2531–2560 (2002)zbMATHCrossRefGoogle Scholar
  14. 14.
    Kawato, M.: Internal Models for Motor Control and Trajectory Planning. Curr. Opin. Neurobiology 9(6), 718–727 (1999)CrossRefGoogle Scholar
  15. 15.
    Schildberger, K.: Multimodal Interneurons In The Cricket Brain - Properties of Identified Extrinsic Mushroom Body Cells. J. Comp. Physiol. A 154(1), 74–79 (1984)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Mark Payne
    • 1
  • Berthold Hedwig
    • 2
  • Barbara Webb
    • 1
  1. 1.IPAB, School of InformaticsUniversity of EdinburghU.K.
  2. 2.Department of ZoologyUniversity of CambridgeU.K.

Personalised recommendations