Toward a Spiking-Neuron Model of the Oculomotor System

  • Jan Morén
  • Tomohiro Shibata
  • Kenji Doya
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6226)

Abstract

We present a physiologically plausible spiking neuron-level model of the superior colliculus as part of the saccade-generating visual system. Two major features of the area are the bursting behavior of its output neurons that drive eye movements, and the spreading neuron activation in the intermediate layer during a saccade. We show that the bursting activity profile that drives the main sequence behavior of saccadic eye movements can be generated by a combination of NMDA and cholinergic receptors driven by a local circuit. We also show how the long-range spreading activation can occur, and propose that the functional role for this mechanism is to track the general activity level and trigger a system-wide reset at the end of a saccade.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Choi, W.Y., Guitton, D.: Firing patterns in superior colliculus of Head-Unrestrained monkey during normal and perturbed gaze saccades reveal Short-Latency feedback and a sluggish rostral shift in activity. J. Neurosci. 29(22), 7166–7180 (2009)CrossRefGoogle Scholar
  2. 2.
    Girard, B., Berthoz, A.: From brainstem to cortex: Computational models of saccade generation circuitry. Progress in Neurobiology 77(4), 215–251 (2005)Google Scholar
  3. 3.
    Sparks, D.L.: The brainstem control of saccadic eye movements. Nature Reviews Neuroscience 3(12), 952–964 (2002)CrossRefGoogle Scholar
  4. 4.
    Zhu, J.J., Lo, F.: Recurrent inhibitory circuitry in the deep layers of the rabbit superior colliculus. The Journal of Physiology 523(3), 731–740 (2000)CrossRefGoogle Scholar
  5. 5.
    Hikosaka, O., Takikawa, Y., Kawagoe, R.: Role of the basal ganglia in the control of purposive saccadic eye movements. Physiol. Rev. 80(3), 953–978 (2000)Google Scholar
  6. 6.
    Saito, Y., Isa, T.: Organization of interlaminar interactions in the rat superior colliculus. J. Neurophysiol. 93(5), 2898–2907 (2005)CrossRefGoogle Scholar
  7. 7.
    Aizawa, H., Kobayashi, Y., Yamamoto, M., Isa, T.: Injection of nicotine into the superior colliculus facilitates occurrence of express saccades in monkeys. J. Neurophysiol. 82(3), 1642–1646 (1999)Google Scholar
  8. 8.
    Saito, Y., Isa, T.: Local excitatory network and NMDA receptor activation generate a synchronous and bursting command from the superior colliculus. J. Neurosci. 23(13), 5854–5864 (2003)Google Scholar
  9. 9.
    Cromer, J.A., Waitzman, D.M.: Comparison of Saccade-Associated neuronal activity in the primate central mesencephalic and paramedian pontine reticular formations. J. Neurophysiol. 98(2), 835–850 (2007)CrossRefGoogle Scholar
  10. 10.
    Zhou, L., Warren, S., May, P.: The feedback circuit connecting the central mesencephalic reticular formation and the superior colliculus in the macaque monkey: tectal connections. Experimental Brain Research 189(4), 485–496 (2008)CrossRefGoogle Scholar
  11. 11.
    Isa, T., Hall, W.C.: Exploring the superior colliculus in vitro. J. Neurophysiol. 102(5), 2581–2593 (2009)CrossRefGoogle Scholar
  12. 12.
    Nakahara, H., Morita, K., Wurtz, R.H., Optican, L.M.: Saccade-Related spread of activity across superior colliculus arise from asymmetry of internal connections. J. Neurophysiol. 96(2), 765–774 (2006)CrossRefGoogle Scholar
  13. 13.
    Soetedjo, R., Kaneko, C.R.S., Fuchs, A.F.: Evidence against a moving hill in the superior colliculus during saccadic eye movements in the monkey. J. Neurophysiol. 87(6), 2778–2789 (2002)Google Scholar
  14. 14.
    van Opstal, A., Goossens, H.: Linear ensemble-coding in midbrain superior colliculus specifies the saccade kinematics. Biological Cybernetics 98(6), 561–577 (2008)MATHCrossRefGoogle Scholar
  15. 15.
    Soetedjo, R., Kaneko, C.R.S., Fuchs, A.F.: Evidence that the superior colliculus participates in the feedback control of saccadic eye movements. J. Neurophysiol. 87(2), 679–695 (2002)Google Scholar
  16. 16.
    Goossens, H., Opstal, A.J.V.: Blink-Perturbed saccades in monkey. II. superior colliculus activity. J. Neurophysiol. 83(6), 3430–3452 (2000)Google Scholar
  17. 17.
    Brette, R., Gerstner, W.: Adaptive exponential Integrate-and-Fire model as an effective description of neuronal activity. J. Neurophysiol. 94(5), 3637–3642 (2005)CrossRefGoogle Scholar
  18. 18.
    Gewaltig, M.O., Diesmann, M.: Nest (neural simulation tool). Scholarpedia 2(4), 1430 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Jan Morén
    • 1
  • Tomohiro Shibata
    • 2
  • Kenji Doya
    • 2
    • 3
  1. 1.Kyoto UniversityKyotoJapan
  2. 2.Nara Institute of Science and TechnologyNaraJapan
  3. 3.Okinawa Institute of Science and TechnologyOkinawaJapan

Personalised recommendations