Advertisement

ImageCLEF pp 185-198 | Cite as

The Robot Vision Task

  • Andrzej PronobisEmail author
  • Barbara Caputo
Part of the The Information Retrieval Series book series (INRE, volume 32)

Abstract

In 2009, ImageCLEF expanded its tasks with the introduction of the first robot vision challenge. The overall focus of the challenge is semantic localization of a robot platform using visual place recognition. This is a key topic of research in the robotics community today. This chapter presents the goals and achievements of the first edition of the robot vision task. We describe the task, the method of data collection used and the evaluation procedure. We give an overview of the obtained results and briefly highlight the most promising approaches. We then outline how the task will evolve in the near and distant future.

Keywords

Mobile Robot Little Square Support Vector Machine Training Sequence Scale Invariant Feature Transform Robot Platform 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boroş E, Roşca G, Iftene A (2009) Uaic: Participation in ImageCLEF 2009 robot vision task. In: Working Notes of CLEF 2009, Corfu, Greece. 978-88-88506-84-5 Google Scholar
  2. Brunskill E, Kollar T, Roy N (2007) Topological mapping using spectral clustering and classification. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) Google Scholar
  3. Cummins M, Newman P (2008) FAB–MAP: Probabilistic localization and mapping in the space of appearance. The International Journal of Robotics Research 27(6):647–665 CrossRefGoogle Scholar
  4. Dissanayake M, Newman P, Clark S, Durrant-Whyte H, Csorba M (2001) A solution to the simultaneous localization and map building (slam) problem. IEEE Transactions on Robotics and Automation 17(3):229–241 CrossRefGoogle Scholar
  5. Feng Y, Halvey M, Jose JM (2009) University of glasgow at ImageCLEF 2009 robot vision task. In: Working Notes of CLEF 2009, Corfu, Greece. Google Scholar
  6. Glotin H, Zhao ZQ, Dumont E (2009) Fast LSIS profile entropy features for robot visual self–localization. In: Working Notes of CLEF 2009, Corfu, Greece. Google Scholar
  7. Griffin G, Holub A, Perona P (2007) Caltech–256 Object Category Dataset. Technical Report 7694. Available at http://authors.library.caltech.edu/7694/
  8. Howard A, Roy N (2003) The Robotics Data Set Repository (Radish). Available at http://radish.sourceforge.net/
  9. Jogan M, Leonardis A (2003) Robust localization using an omnidirectional appearance-based subspace model of environment. Robotics and Autonomous Systems 45(1):51–72 CrossRefGoogle Scholar
  10. Kortenkamp D, Weymouth T (1994) Topological mapping for mobile robots using a combination of sonar and vision sensing. In: Proceedings of the 12th National Conference on Artificial Intelligence Google Scholar
  11. Kuipers B, Beeson P (2002) Bootstrap learning for place recognition. In: Proceedings of the 18th National Conference on Artificial Intelligence (AAAI’02) Google Scholar
  12. Lowe D (2004) Distinctive image features from scale–invariant keypoints. International Journal of Computer Vision 60(2) Google Scholar
  13. Luo J, Pronobis A, Caputo B, Jensfelt P (2007) Incremental learning for place recognition in dynamic environments. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS07), San Diego, CA, USA Google Scholar
  14. Martínez-Gómez J, Jiménez-Picazo A, García-Varea I (2009) A particle–filter-based self–localization method using invariant features as visual information. In: Working Notes of CLEF 2009, Corfu, Greece. Google Scholar
  15. Martínez Mozos O, Triebel R, Jensfelt P, Rottmann A, Burgard W (2007) Supervised semantic labeling of places using information extracted from sensor data. Robotics and Autonomous Systems 55(5) Google Scholar
  16. MIT-CSAIL (2006) The MIT–CSAIL database of objects and scenes. Available at http://web.mit.edu/torralba/www/database.html.
  17. Nebot E (2006) The Sydney Victoria Park Dataset. Available at http://www-personal.acfr.usyd.edu.au/nebot/dataset.htm
  18. Nourbakhsh I, Powers R, Birchfield S (1995) Dervish: An office navigation robot. AI Magazine 16(2):53–60 Google Scholar
  19. Pham TT, Maisonnasse L, Mulhem P (2009) Visual language modeling for mobile localization. In: Working Notes of CLEF 2009, Corfu, Greece. Google Scholar
  20. Ponce J, Berg T, Everingham M, Forsyth D, Hebert M, Lazebnik S, Marszalek M, Schmid C, Russell C, Torralba A, Williams C, Zhang J, Zisserman A (2006) Dataset issues in object recognition. In: Towards Category–Level Object Recognition Google Scholar
  21. Pronobis A, Caputo B (2006) A discriminative approach to robust visual place recognition. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS’06) Google Scholar
  22. Pronobis A, Martínez Mozos O, Caputo B (2008) SVM–based discriminative accumulation scheme for place recognition. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA’08) Google Scholar
  23. Siagian C, Itti L (2007) Biologically–inspired robotics vision monte– carlo localization in the outdoor environment. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS’07) Google Scholar
  24. Tapus A, Siegwart R (2005) Incremental robot mapping with fingerprints of places. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS’05) Google Scholar
  25. Thrun S (1998) Learning metric–topological maps for indoor mobile robot navigation. Artificial Intelligence 1:30–42 Google Scholar
  26. Torralba A, Murphy K, Freeman B, Rubin M (2003) Context–based vision system for place and object recognition. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV’03) Google Scholar
  27. Ullah MM, Pronobis A, Caputo B, Luo J, Jensfelt P, Christensen H (2008) Towards robust place recognition for robot localization. In: Proceedings of the 2008 IEEE International Conference on Robotics and Automation, Google Scholar
  28. Ulrich I, Nourbakhsh I (2000) Appearance–based place recognition for topological localization. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA 2000) Google Scholar
  29. Wolf J, Burgard W, Burkhardt H (2005) Robust vision–based localization by combining an image retrieval system with monte carlo localization. IEEE Transactions Transactions on Robotics 21(2):208–216 CrossRefGoogle Scholar
  30. Xing L, Pronobis A (2010) Multi–cue discriminative place recognition. In: Peters C, Tsikrika T, Müller H, Kalpathy-Cramer J, Jones GJF, Gonzalo J, Caputo B (eds) Multilingual Information Access Evaluation Vol. II Multimedia Experiments, Springer Google Scholar
  31. Zender H, Martinez Mozos O, Jensfelt P, Kruijff GJ, Burgard W (2008) Conceptual spatial representations for indoor mobile robots. Robotics and Autonomous Systems 56(6):493–502 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Department of Computer ScienceRoyal Institute of TechnologyStockholmSweden
  2. 2.Centre du ParcIdiap Research InstituteMartignySwitzerland

Personalised recommendations