Advertisement

Fundamental Equations of Lake Hydrodynamics

  • Kolumban HutterEmail author
  • Yongqi Wang
  • Irina P. Chubarenko
Chapter
Part of the Advances in Geophysical and Environmental Mechanics and Mathematics book series (AGEM)

Abstract

Having laid down in the previous chapters the foundations of Newtonian mechanics, classical thermodynamics and elements of mathematics, indispensable to anyone dealing with lake physics, we shall now attempt to formulate the basic laws in a mathematical form appropriate for direct use in the ensuing chapters.

Keywords

Surface Element Stress Vector Cauchy Stress Tensor Tracer Mass Eulerian Description 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Batchelor, G.K.: An Introduction to Fluid Mechanics, Cambridge University Press, Cambridge (1967)Google Scholar
  2. 2.
    Berezin, Y.A. and Hutter, K.: On large scale vertical structures in incompressible fluids with thermal expansion. Math. Models Methods Appl. Sci. 7, 113–123 (1997)CrossRefGoogle Scholar
  3. 3.
    Einstein, A.: Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Annalen der Physik 17, 549–560 (1905)CrossRefGoogle Scholar
  4. 4.
    Fick, A.: Über Diffusion. Poggendorff’s Annalen der Physik 94, 59–86 (1855)CrossRefGoogle Scholar
  5. 5.
    Gurtin, M.E.: An Introduction to Continuum Mechanics. Academic, New York, NY, 265 p. (1981)Google Scholar
  6. 6.
    Hutter, K.: Waves and oscillations in the ocean and in lakes. In:Continuum Mechanics in Environmental Science and Geophysics. (ed. Hutter, K.) Lecture Notes No. 337, International Centre for Mechanical Sciences, Udine, Italy, Springer New York NY, 522 p. (1993)Google Scholar
  7. 7.
    Hutter, K.: Avalanche dynamics. In: Hydrology of Disasters. (ed. Singh, V.P.) Kluwer, Dordrecht, 317–394 (1996)CrossRefGoogle Scholar
  8. 8.
    Hutter, K. and Jöhnk, K.: Continuum Methods of Physical Modeling. Springer, Berlin, 635 p. (2004)Google Scholar
  9. 9.
    Müller, I.: Thermodynamics. Pitman, 521 p. (1985)Google Scholar
  10. 10.
    Newton, I.: Philosophiae naturalis pricipia mathematica. London (1687) (1st edition); (1713) (2nd edition); (1726) (3rd edition)Google Scholar
  11. 11.
    Prandtl, L.: Bericht über Untersuchungen zur ausgebildeten Turbulenz. Zeitschrift für angewandte Mathematik und Mechanik (ZAMM), 5 (2), 136–139 (1925)Google Scholar
  12. 12.
    Pudasaini, S.P. and Hutter, K.: Avalanche Dynamics – Dynamics of rapid flows of dense granular avalanches, Springer, Berlin, 602 p. (2007)Google Scholar
  13. 13.
    Stommel, H. and Moore, D.W.: An Introduction to the Coriolis Force. Columbia University Press, New York, NY (1989)Google Scholar
  14. 14.
    Truesdell, C.A.: Rational Thermodynamics. 2nd edition. Springer, Berlin, 578 p. (1984)Google Scholar
  15. 15.
    Truesdell, C.A. and Noll, W.: The non-linear field theories of mechanics In: Encyclopedia of Physics, Vol. III/3 (ed. Flügge, S.) Springer, Berlin, 602 p. (1965)Google Scholar
  16. 16.
    Wüest, A., Ravens, T.M., Granin, N.G., Kocsis, O., Schurter, M. and Sturm, M.: Cold intrusions in Lake Baikal: Direct observational evidence for deep-water renewal. Limnol. Oceanogr. 50 (1), 184–196 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Kolumban Hutter
    • 1
    Email author
  • Yongqi Wang
    • 2
  • Irina P. Chubarenko
    • 3
  1. 1.ETH Zürich, c/o Versuchsanstalt für Wasserbau Hydrologie und GlaziologieZürichSwitzerland
  2. 2.Department of Mechanical EngineeringDarmstadt University of TechnologyDarmstadtGermany
  3. 3.Russian Academy of Sciences, P.P. Shirshov Institute of OceanologyKaliningradRussia

Personalised recommendations