Advertisement

Abstract

The paper studies the interrelationships between the social-theoretic problems of preference and judgment aggregation from the perspective of formal logic. The result of the paper is twofold. On the one hand, preference aggregation on total preorders is proven equivalent to the aggregation of specific types of judgments. On the other hand, judgment aggregation on propositional logic is proven equivalent to the aggregation of specific types of preferences. This shows how the aggregation of preferences and judgments can be viewed, in fact, as the two faces of a same coin.

Keywords

Propositional Logic Ranking Function Valuation Function Preference Aggregation Judgment Aggregation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arrow, K.: A Difficulty in the Concept of Social Welfare. J. Political Econ. 58(4), 328–346 (1950)CrossRefGoogle Scholar
  2. 2.
    Arrow, K.: Social Choice and Individual Values, 2nd edn. John Wiley, New York (1963)Google Scholar
  3. 3.
    Brams, S.J., Fishburn, P.C.: Approval Voting. Am. Political Sci. Rev. 72(3), 831–847 (1978)CrossRefGoogle Scholar
  4. 4.
    Debreu, G.: Represetation of a Preference ordering by a Numerical Function. In: Thrall, R.M., Coombs, C.H., Davis, R.L. (eds.) Decision Processes. John Wiley, Chichester (1954)Google Scholar
  5. 5.
    Dietrich, F.: A Generalised Model of Judgment Aggregation. Soc. Choice Welf. 28(4), 529–565 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Dietrich, F., List, C.: Arrow’s Theorem in Judgment Aggregation. Soc. Choice Welf. 29, 19–33 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Dietrich, F., List, C.: A Liberal Paradox for Judgment Aggregation. Soc. Choice Welf. 31, 59–78 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Dokow, E., Holzman, R.: Aggregation of Binary Evaluations, Working Paper, Technion Israel Institute of Technology (2005)Google Scholar
  9. 9.
    Gaertner, W.: A Primer in Social Choice Theory. Oxford University Press, Oxford (2006)zbMATHGoogle Scholar
  10. 10.
    Geanakoplos, J.: Three Brief Proofs of Arrow’s Impossibility Theorem. Econ. Theory 26, 211–215 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Gottwald, S.: Many-valued Logics. In: Jacquette, D. (ed.) Philosophy of Logic. Handbook of the Philosophy of Sciences, vol. 5, pp. 675–722. North-Holland, Amsterdam (2007)CrossRefGoogle Scholar
  12. 12.
    Hähnle, R.: Advanced Many-valued Logics. In: Gabbay, D.M., Guenther, F. (eds.) Handbook of Philosophical Logic, 2nd edn., vol. 2, pp. 297–395. Kluwer, Dordrecht (2001)Google Scholar
  13. 13.
    Hájek, P.: Making Fuzzy Description Logics More General. Fuzzy Sets and Systems 154(1), 1–15 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Inada, K.: A Note on the Simple Majority Decision Rule. Econometrica 32(4), 525–531 (1964)CrossRefMathSciNetGoogle Scholar
  15. 15.
    List, C., Pettit, P.: Aggregating Sets of Judgments: Two Impossibility Results Compared. Synthese 140, 207–235 (2004)CrossRefMathSciNetGoogle Scholar
  16. 16.
    List, C., Puppe, C.: Judgment Aggregation: A Survey. In: Anand, P., Pattanaik, P., Puppe, C. (eds.) Handbook of Rational and Social Choice. Oxford University Press, Oxford (2009)Google Scholar
  17. 17.
    Makinson, D.: Combinatorial Versus Decision-theoretic Components of Impossibility Theorems. Theory and Decision 40, 181–190 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Musil, R.: The Man Without Qualities. Picador (1997); original title: Der Mann ohne Eigenschaften (1943) Google Scholar
  19. 19.
    Nehring, K.: Arrow’s Theorem as a Corollary. Econ. Letters 80, 379–382 (2003)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Nehring, K., Puppe, C.: Strategy-proof Social Choice on Single-peaked Domains: Possibility, Impossibility and the Space Between. University of Califorina at Davis (working paper)Google Scholar
  21. 21.
    Pauly, M., van Hees, M.: Logical Lonstraints on Judgment Aggregation. J. Philos. Log. 35, 569–585 (2006)zbMATHCrossRefGoogle Scholar
  22. 22.
    Pettit, P.: Deliberative Democracy and the Discoursive Dilemma. Philos. Issues 11(1), 268–299 (2001)Google Scholar
  23. 23.
    Post, E.: Introduction to a General Theory of Propositions. Am. J. Math. 43, 163–185 (1921)zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Sen, A.K.: The Impossibility of a Paretian Liberal. J. Political Econ. 78, 152–157 (1970)CrossRefGoogle Scholar
  25. 25.
    Taylor, A.D.: Social Choice and the Mathematics of Manipulation. Cambridge University Press, Cambridge (2005)zbMATHCrossRefGoogle Scholar
  26. 26.
    van Hees, M.: The Limits of Epistemic Democracy. Soc. Choice Welf. 28, 649–666 (2007)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Davide Grossi
    • 1
  1. 1.Institute of Logic, Language and ComputationUniversiteit van AmsterdamAmsterdamThe Netherlands

Personalised recommendations