Don’t Vote, Evolve!

  • Pietro Speroni di Fenizio
  • Derek Paterson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6229)

Abstract

We present an alternative form of decision making designed using a Human Based Genetic Algorithms. The algorithm permits the participants to tackle open questions, by letting all of them propose answers and evaluate each other answers. A successful example is described and some theoretical results are presented showing how the system scales up.

Keywords

e-Democracy Voting Theory Pareto Front Genetic Algorithms Multi-Criterion Decision Making 

References

  1. 1.
    Merriam Webster online dictionary, page (2010), http://www.merriam-webster.com/dictionary/democracy (accessed March 3, 2010 )
  2. 2.
    Taylor, A., Pacelli, A.: Mathematics and Politics: Strategy, Voting, Power and Proof. Springer Book, Heidelberg (2008)CrossRefMATHGoogle Scholar
  3. 3.
    Data gov., http://www.data.gov/ (accessed March 03, 2010)
  4. 4.
    Data.gov.uk, http://data.gov.uk/ (accessed March 03, 2010)
  5. 5.
    Goulandris, V.: Opengov.gr: The first 120 days of e-deliberation, http://onlinepolitics.wordpress.com/2010/02/22/opengovgr-first-120-days-e-deliberation/ (accessed January 03, 2010)
  6. 6.
    Holland, J.H.: Adaptation in natural and artificial systems. In: An introductory analysis with applications to biology, control, and artificial intelligence. University of Michigan Press, Ann Arbor (1975)Google Scholar
  7. 7.
    Kosorukoff, A.: Human based genetic algorithm. In: IEEE International Conference on Systems (2001)Google Scholar
  8. 8.
    Defaweux, A., Grosche, T., Karapatsiou, M., Moraglio, A., Shenfield, A.: Automated Concept Evolution. Technical Report Vrije Universiteit Brussel, Belgium (2003)Google Scholar
  9. 9.
    Speroni di Fenizio, P., Anderson, C.: Using Pareto Front for a Consensus Building, Human Based, Genetic Algorithm. In: Proceedings of the European Conference of Artificial Life (2009)Google Scholar
  10. 10.
    Brams, S., Fishburn, P.: Approval Voting. Springer, Heidelberg (2007)CrossRefMATHGoogle Scholar
  11. 11.
    Ehrgott, M.: Multicriteria optimization. Springer, Heidelberg (2005)MATHGoogle Scholar
  12. 12.
    Sevan, G., Ficici Jordan, B., Pareto, P.: Optimality in Coevolutionary Learning. In: Kelemen, J., Sosík, P. (eds.) ECAL 2001. LNCS (LNAI), vol. 2159. Springer, Heidelberg (2001)Google Scholar
  13. 13.
    Vilfredo goes to Athens. How should we handle the “wall of text” problem?, http://vilfredo.org/viewhistoryofquestion.php?q=67&room=Vilfredo (accessed February 28, 2010)
  14. 14.
    Vilfredo goes to Athens. Which is the meaning of Life?, http://vilfredo.org/viewhistoryofquestion.php?q=14 (accessed March 03, 2010)
  15. 15.
    Triantaphyllou, E.: Multi-Criteria Decision Making Methods: A Comparative Study. Kluwer Academic Publishers, Boston (2000)CrossRefMATHGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2010

Authors and Affiliations

  • Pietro Speroni di Fenizio
    • 1
  • Derek Paterson
    • 1
  1. 1.CISUC, Department of Informatics EngineeringUniversity of CoimbraCoimbraPortugal

Personalised recommendations