Connected Searching of Weighted Trees

  • Dariusz Dereniowski
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6281)

Abstract

In this paper we consider the problem of connected edge searching of weighted trees. Authors claim in [L. Barrière at al., Capture of an intruder by mobile agents, SPAA’02 (2002) 200-209] that there exists a polynomial-time algorithm for finding an optimal search strategy. However, due to some flaws in their algorithm, the problem turns out to be open. It is proven in this paper that the considered problem is strongly NP-complete even for node-weighted trees (the weight of each edge is 1). It is also shown that there exists a polynomial-time algorithm for finding an optimal connected search strategy for a given bounded degree tree with arbitrary weights on the edges and on the vertices.

Keywords

connected searching graph searching search strategy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barrière, L., Flocchini, P., Fraigniaud, P., Santoro, N.: Capture of an intruder by mobile agents. In: SPAA 2002: Proceedings of the fourteenth annual ACM symposium on parallel algorithms and architectures, pp. 200–209. ACM, New York (2002)CrossRefGoogle Scholar
  2. 2.
    Błażewicz, J., Ecker, K., Pesch, E., Schmidt, G., Węglarz, J.: Scheduling computer and manufacturing processes. Springer, New York (1996)MATHGoogle Scholar
  3. 3.
    Cheng, T.C.E., Ding, Q.: Scheduling start time dependent tasks with deadlines and identical initial processing times on a single machine. Comput. Oper. Res. 30(1), 51–62 (2003)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Cheng, T.C.E., Ding, Q., Lin, B.M.T.: A concise survey of scheduling with time-dependent processing times. European Journal of Operational Research 152(1), 1–13 (2004)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Flocchini, P., Huang, M.J., Luccio, F.L.: Decontaminating chordal rings and tori using mobile agents. Int. J. Found. Comput. Sci. 18(3), 547–563 (2007)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Flocchini, P., Huang, M.J., Luccio, F.L.: Decontamination of hypercubes by mobile agents. Netw. 52(3), 167–178 (2008)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Fomin, F.V., Thilikos, D.M.: An annotated bibliography on guaranteed graph searching. Theor. Comput. Sci. 399(3), 236–245 (2008)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Fomin, F.V., Thilikos, D.M., Todinca, I.: Connected graph searching in outerplanar graphs. Electronic Notes in Disc. Math. 22, 213–216 (2005)CrossRefGoogle Scholar
  9. 9.
    Kubiak, W., van de Velde, S.: Scheduling deteriorating jobs to minimize makespan. Naval Research Logistics 45(5), 511–523 (1998)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Mihai, R., Todinca, I.: Pathwidth is NP-hard for weighted trees. In: Deng, X., Hopcroft, J.E., Xue, J. (eds.) FAW 2009. LNCS, vol. 5598, pp. 181–195. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  11. 11.
    Nisse, N.: Connected graph searching in chordal graphs. Discrete Applied Math. 157(12), 2603–2610 (2008)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Shareghi, P., Imani, N., Sarbazi-Azad, H.: Capturing an intruder in the pyramid. In: Grigoriev, D., Harrison, J., Hirsch, E.A. (eds.) CSR 2006. LNCS, vol. 3967, pp. 580–590. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Yang, B., Dyer, D., Alspach, B.: Sweeping graphs with large clique number. Discrete Mathematics 309(18), 5770–5780 (2009)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Dariusz Dereniowski
    • 1
  1. 1.Department of Algorithms and System ModelingGdańsk University of TechnologyPoland

Personalised recommendations