Information Complexity of Online Problems

  • Juraj Hromkovič
  • Rastislav Královič
  • Richard Královič
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6281)


What is information? Frequently spoken about in many contexts, yet nobody has ever been able to define it with mathematical rigor. The best we are left with so far is the concept of entropy by Shannon, and the concept of information content of binary strings by Chaitin and Kolmogorov. While these are doubtlessly great research instruments, they are hardly helpful in measuring the amount of information contained in particular objects. In a pursuit to overcome these limitations, we propose the notion of information content of algorithmic problems. We discuss our approaches and their possible usefulness in understanding the basic concepts of informatics, namely the concept of algorithms and the concept of computational complexity.


Information Content Problem Instance Competitive Ratio Online Algorithm Information Complexity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Böckenhauer, H.-J., Komm, D., Královič, R., Královič, R., Mömke, T.: Online algorithms with advice. Technical Report 614, ETH Zürich (2009)Google Scholar
  2. 2.
    Böckenhauer, H.-J., Komm, D., Královič, R., Královič, R., Mömke, T.: On the advice complexity of online problems. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878, pp. 331–340. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cambridge University Press, Cambridge (1998)zbMATHGoogle Scholar
  4. 4.
    Chaitin, G.J.: On the length of programs for computing finite binary sequences. Journal of the ACM 13(4), 547–569 (1966)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Dobrev, S., Královič, R., Pardubská, D.: How much information about the future is needed? In: Geffert, V., Karhumäki, J., Bertoni, A., Preneel, B., Návrat, P., Bieliková, M. (eds.) SOFSEM 2008. LNCS, vol. 4910, pp. 247–258. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Emek, Y., Fraigniaud, P., Korman, A., Rosén, A.: Online computation with advice. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S.E., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5555, pp. 427–438. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Hromkovič, J.: Design and Analysis of Randomized Algorithms: Introduction to Design Paradigms, Texts in Theoretical Computer Science. An EATCS Series. Springer, New York (2005)Google Scholar
  8. 8.
    Hromkovič, J., Mömke, T., Steinhöfel, K., Widmayer, P.: Job shop scheduling with unit length tasks: bounds and algorithms. Algorithmic Operations Research 2(1), 1–14 (2007)MathSciNetGoogle Scholar
  9. 9.
    Kolmogorov, A.N.: Three approaches to the definition of the concept “quantity of information”. Problemy Peredachi Informatsii 1, 3–11 (1965)zbMATHMathSciNetGoogle Scholar
  10. 10.
    Shannon, C.E.: A mathematical theory of communication. Mobile Computing and Communications Review 5(1), 3–55 (2001)CrossRefGoogle Scholar
  11. 11.
    Turing, A.M.: On computable numbers, with an application to the Entscheidungsproblem. Proceedings of the London Mathematical Society 2(42), 230–265 (1936)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Juraj Hromkovič
    • 1
  • Rastislav Královič
    • 2
  • Richard Královič
    • 1
  1. 1.Department of Computer ScienceETH ZurichSwitzerland
  2. 2.Department of Computer ScienceComenius UniversityBratislavaSlovakia

Personalised recommendations