On Factor Universality in Symbolic Spaces

  • Laurent Boyer
  • Guillaume Theyssier
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6281)


The study of factoring relations between subshifts or cellular automata is central in symbolic dynamics. Besides, a notion of intrinsic universality for cellular automata based on an operation of rescaling is receiving more and more attention in the literature. In this paper, we propose to study the factoring relation up to rescalings, and ask for the existence of universal objects for that simulation relation.

In classical simulations of a system S by a system T, the simulation takes place on a specific subset of configurations of T depending on S (this is the case for intrinsic universality). Our setting, however, asks for every configurations of T to have a meaningful interpretation in S. Despite this strong requirement, we show that there exists a cellular automaton able to simulate any other in a large class containing arbitrarily complex ones. We also consider the case of subshifts and, using arguments from recursion theory, we give negative results about the existence of universal objects in some classes.


Cellular Automaton Symbolic Dynamic Main Layer Simulation Relation Transition Table 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Berger, R.: The undecidability of the domino problem. Mem. Amer. Math Soc. 66 (1966)Google Scholar
  2. 2.
    Boyer, L., Theyssier, G.: On local symmetries and universality in cellular automata. In: STACS, pp. 195–206 (2009)Google Scholar
  3. 3.
    Cervelle, J., Formenti, E., Guillon, P.: Ultimate traces of cellular automata. In: STACS, pp. 155–166 (2010)Google Scholar
  4. 4.
    Delorme, M., Mazoyer, J., Ollinger, N., Theyssier, G.: Bulking ii: Classifications of cellular automata. CoRR, abs/1001.5471 (2010)Google Scholar
  5. 5.
    Doty, D., Lutz, J.H., Patitz, M.J., Summers, S.M., Woods, D.: Intrinsic universality in self-assembly. In: STACS, pp. 275–286 (2010)Google Scholar
  6. 6.
    Durand-Lose, J.O.: Intrinsic universality of a 1-dimensional reversible cellular automaton. In: STACS, pp. 439–450 (1997)Google Scholar
  7. 7.
    Hedlund, G.A.: Endomorphisms and Automorphisms of the Shift Dynamical Systems. Mathematical Systems Theory 3(4), 320–375 (1969)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Hochman, M.: A note on universality in multidimensional symbolic dynamics. Discrete Contin. Dyn. Syst. Ser. S 2(2), 301–314 (2009)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Hochman, M.: On the dynamics and recursive properties of multidimensional symbolic systems. Inventiones Mathematicae 176(1), 131–167 (2009)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Kari, J.: The Nilpotency Problem of One-dimensional Cellular Automata. SIAM Journal on Computing 21, 571–586 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Kůrka, P.: Languages, equicontinuity and attractors in cellular automata. Ergodic Theory and Dynamical Systems 17, 417–433 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Kůrka, P.: Topological and symbolic dynamics. Société Mathématique de France (2003)Google Scholar
  13. 13.
    Kůrka, P.: Zero-dimensional dynamical systems, formal languages, and universality. Theory Comput. Syst. 32(4), 423–433 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Lafitte, G., Weiss, M.: An almost totally universal tile set. In: TAMC, pp. 271–280 (2009)Google Scholar
  15. 15.
    Moreira, A.: Universality and decidability of number-conserving cellular automata. Theor. Comput. Sci. 292(3), 711–721 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Nasu, M.: The dynamics of expansive invertible onesided cellular automata. Trans. Amer. Math. Soc. 354, 4067–4084 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Von Neumann, J.: Theory of Self-Reproducing Automata. University of Illinois Press, Urbana (1966)Google Scholar
  18. 18.
    Ollinger, N.: Automates Cellulaires: structures. PhD thesis, École Normale Supérieure de Lyon (décembre 2002)Google Scholar
  19. 19.
    Ollinger, N.: The quest for small universal cellular automata. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 318–330. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  20. 20.
    Ollinger, N.: The intrinsic universality problem of one-dimensional cellular automata. In: Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp. 632–641. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  21. 21.
    Sablik, M.: Directional dynamics for cellular automata: A sensitivity to initial condition approach. Theor. Comput. Sci. 400(1-3), 1–18 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Theyssier, G.: Automates Cellulaires: un modèle de complexités. PhD thesis, École Normale Supérieure de Lyon (Décembre 2005)Google Scholar
  23. 23.
    Wang, H.: Proving theorems by pattern recognition ii. Bell System Tech. Journal 40(2) (1961)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Laurent Boyer
    • 1
  • Guillaume Theyssier
    • 1
  1. 1.LAMA, (UMR 5127 — CNRS, Université de Savoie)Le Bourget-du-lac cedexFrance

Personalised recommendations