Improved Approximability and Non-approximability Results for Graph Diameter Decreasing Problems

  • Davide Bilò
  • Luciano Gualà
  • Guido Proietti
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6281)


In this paper we study two variants of the problem of adding edges to a graph so as to reduce the resulting diameter. More precisely, given a graph G = (V,E), and two positive integers D and B, the Minimum-Cardinality Bounded-Diameter Edge Addition (MCBD) problem is to find a minimum cardinality set F of edges to be added to G in such a way that the diameter of G + F is less than or equal to D, while the Bounded-Cardinality Minimum-Diameter Edge Addition (BCMD) problem is to find a set F of B edges to be added to G in such a way that the diameter of G + F is minimized. Both problems are well known to be NP-hard, as well as approximable within O(logn logD) and 4 (up to an additive term of 2), respectively. In this paper, we improve these long-standing approximation ratios to O(logn) and to 2 (up to an additive term of 2), respectively. As a consequence, we close, in an asymptotic sense, the gap on the approximability of the MCBD problem, which was known to be not approximable within c logn, for some constant c > 0, unless P=NP. Remarkably, as we further show in the paper, our approximation ratio remains asymptotically tight even if we allow for a solution whose diameter is optimal up to a multiplicative factor approaching \(\frac{5}{3}\). On the other hand, on the positive side, we show that at most twice of the minimal number of additional edges suffices to get at most twice of the required diameter.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alon, N., Gyárfás, A., Ruszinkó, M.: Decreasing the diameter of bounded degree graphs. Journal of Graph Theory 35(3), 161–172 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Brandstädt, A., Le, V.B., Spinrad, J.: Graph classes: a survey. SIAM Monographs on Discrete Mathematics and Applications (1999)Google Scholar
  3. 3.
    Chandrasekaran, R., Daughety, A.: Location on tree networks: p-centre and n-dispersion problems. Mathematics of Operations Research 6(1), 50–57 (1981)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Chepoi, V., Estellon, B., Nouioua, K., Vaxès, Y.: Mixed covering of trees and the augmentation problem with odd diameter constraints. Algorithmica 45(2), 209–226 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Chepoi, V., Vaxès, Y.: Augmenting trees to meet biconnectivity and diameter constraints. Algorithmica 33(2), 243–262 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Chung, F.: Diameters of graph: old problems and new results. Congr. Numer. 60, 295–317 (1987)MathSciNetGoogle Scholar
  7. 7.
    Chung, F., Garey, M.: Diameter bounds for altered graphs. Journal of Graph Theory 8(4), 511–534 (1984)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Dodis, Y., Khanna, S.: Designing networks with bounded pairwise distance. In: STOC, pp. 750–759 (1999)Google Scholar
  9. 9.
    Erdös, P., Gyárfás, A., Ruszinkó, M.: How to decrease the diameter of triangle-free graphs. Combinatorica 18(4), 493–501 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Erdös, P., Rényi, A.: On a problem in the theory of graphs. Publ. Math. Inst. Hung. Acad. Sci. B(7), 623–639 (1963)Google Scholar
  11. 11.
    Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theor. Comput. Sci. 38, 293–306 (1985)zbMATHCrossRefGoogle Scholar
  12. 12.
    Grigorescu, E.: Decreasing the diameter of cycles. J. Graph Theory 43(4), 299–303 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Ishii, T., Yamamoto, S., Nagamochi, H.: Augmenting forests to meet odd diameter requirements. In: Ibaraki, T., Katoh, N., Ono, H. (eds.) ISAAC 2003. LNCS, vol. 2906, pp. 434–443. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  14. 14.
    Kapoor, S., Sarwat, M.: Bounded-diameter minimum-cost graph problems. Theory Comput. Syst. 41(4), 779–794 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Kariv, O., Hakimi, S.: An algorithmic approach to network location problems. SIAM Journal on Applied Mathematics 37(3), 513–538 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Li, C.-L., McCormick, S.T., Simchi-Levi, D.: On the minimum-cardinality-bounded-diameter and the bounded-cardinality-minimum-diameter edge addition problem. Operations Research Letters 11, 303–308 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Plesník, J.: On the computational complexity of centers locating in a graph. Aplikace Mat. 25Google Scholar
  18. 18.
    Plesník, J.: The complexity of designing a network with minimum diameter. Networks 11(1), 77–85 (1981)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Raz, R., Safra, S.: A sub-constant error-probability low-degree test, and a sub-constant error-probability pcp characterization of np. In: STOC, pp. 475–484 (1997)Google Scholar
  20. 20.
    Schoone, A.A., Bodlaender, H.L., van Leeuwen, J.: Diameter increase caused by edge deletion. Journal of Graph Theory 11(3), 409–427 (1987)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Davide Bilò
    • 1
  • Luciano Gualà
    • 2
  • Guido Proietti
    • 1
    • 3
  1. 1.Dipartimento di InformaticaUniversità di L’AquilaL’AquilaItaly
  2. 2.Dipartimento di MatematicaUniversità di Tor VergataRomaItaly
  3. 3.Istituto di Analisi dei Sistemi ed Informatica, CNRRomaItaly

Personalised recommendations