Advertisement

On Problem Kernels for Possible Winner Determination under the k-Approval Protocol

  • Nadja Betzler
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6281)

Abstract

The Possible Winner problem asks whether some distinguished candidate may become the winner of an election when the given incomplete votes (partial orders) are extended into complete ones (linear orders) in a favorable way. Under the k-approval protocol, for every voter, the best k candidates of his or her preference order get one point. A candidate with maximum total number of points wins. The Possible Winner problem for k-approval is NP-complete even if there are only two votes (and k is part of the input). In addition, it is NP-complete for every fixed k ∈ {2, ..., m − 2} with m denoting the number of candidates if the number of votes is unbounded. We investigate the parameterized complexity with respect to the combined parameter k and “number of incomplete votes” t, and with respect to the combined parameter k′: = m − k and t. For both cases, we use kernelization to show fixed-parameter tractability. However, we show that whereas there is a polynomial-size problem kernel with respect to (t,k′), it is very unlikely that there is a polynomial-size kernel for (t,k). We provide additional fixed-parameter algorithms for some special cases.

Keywords

Vote System Polynomial Kernel Reduction Rule Approval Vote Combine Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bachrach, Y., Betzler, N., Faliszewski, P.: Probabilistic possible winner determination. In: Proc. of 24th AAAI (to appear 2010)Google Scholar
  2. 2.
    Baumeister, D., Rothe, J.: Taking the final step to a full dichotomy of the Possible Winner problem in pure scoring rules. In: Proc. of 19th ECAI (2010) (short paper)Google Scholar
  3. 3.
    Betzler, N., Dorn, B.: Towards a complexity dichotomy of finding possible winners in elections based on scoring rules. In: Královič, R., Niwiński, D. (eds.) MFCS 2009. LNCS, vol. 5734, pp. 124–136. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Betzler, N., Guo, J., Niedermeier, R.: Parameterized computational complexity of Dodgson and Young elections. Inform. Comput. 208(2), 165–177 (2010)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Betzler, N., Hemmann, S., Niedermeier, R.: A multivariate complexity analysis of determining possible winners given incomplete votes. In: Proc. of 21st IJCAI, pp. 53–58 (2009)Google Scholar
  6. 6.
    Bodlaender, H.L.: Kernelization: New upper and lower bound techniques. In: Chen, J., Fomin, F.V. (eds.) IWPEC 2009. LNCS, vol. 5917, pp. 17–37. Springer, Heidelberg (2009)Google Scholar
  7. 7.
    Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On problems without polynomial kernels. J. Comput. Syst. Sci. 75(8), 423–434 (2009)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Chor, B., Fellows, M., Juedes, D.W.: Linear kernels in linear time, or how to save k colors in o(n 2) steps. In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds.) WG 2004. LNCS, vol. 3353, pp. 257–269. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    Dom, M., Lokshtanov, D., Saurabh, S.: Incompressibility through colors and IDs. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5555, pp. 378–389. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg (1999)Google Scholar
  11. 11.
    Elkind, E., Faliszewski, P., Slinko, A.: Swap bribery. In: Mavronicolas, M., Papadopoulou, V.G. (eds.) Algorithmic Game Theory. LNCS, vol. 5814, pp. 299–310. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  12. 12.
    Fortnow, L., Santhanam, R.: Infeasibility of instance compression and succinct PCPs for NP. In: Proc. of 40th STOC, pp. 133–142. ACM, New York (2008)Google Scholar
  13. 13.
    Guo, J., Niedermeier, R.: Invitation to data reduction and problem kernelization. ACM SIGACT News 38(1), 31–45 (2007)CrossRefGoogle Scholar
  14. 14.
    Hemaspaandra, E., Hemaspaandra, L.A.: Dichotomy for voting systems. J. Comput. Syst. Sci. 73(1), 73–83 (2007)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Konczak, K., Lang, J.: Voting procedures with incomplete preferences. In: Proc. of IJCAI 2005 Multidisciplinary Workshop on Advances in Preference Handling (2005)Google Scholar
  16. 16.
    Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press, Oxford (2006)MATHCrossRefGoogle Scholar
  17. 17.
    Pini, M.S., Rossi, F., Venable, K.B., Walsh, T.: Incompleteness and incomparability in preference aggregation. In: Proc. of 20th IJCAI, pp. 1464–1469 (2007)Google Scholar
  18. 18.
    Xia, L., Conitzer, V.: Determining possible and necessary winners under common voting rules given partial orders. In: Proc. of 23rd AAAI, pp. 196–201. AAAI Press, Menlo Park (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Nadja Betzler
    • 1
  1. 1.Institut für InformatikFriedrich-Schiller-Universität JenaJenaGermany

Personalised recommendations