Advertisement

Abstract

In this talk, we describe two recent developments in quantum algorithms.

The first new development is a quantum algorithm for evaluating a Boolean formula consisting of AND and OR gates of size N in time \(O(\sqrt{N})\). This provides quantum speedups for any problem that can be expressed via Boolean formulas. This result can be also extended to span problems, a generalization of Boolean formulas. This provides an optimal quantum algorithm for any Boolean function in the black-box query model.

The second new development is a quantum algorithm for solving systems of linear equations. In contrast with traditional algorithms that run in time O(N 2.37...) where N is the size of the system, the quantum algorithm runs in time O(log c N). It outputs a quantum state describing the solution of the system.

Keywords

Boolean Function Quantum Algorithm Discrete Logarithm Quantum Walk Boolean Formula 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aaronson, S.: D-Wave Easter Spectacular. A blog post (April 7, 2007), http://scottaaronson.com/blog/?p=225
  2. 2.
    Altshuler, B., Krovi, H., Roland, J.: Anderson localization casts clouds over adiabatic quantum optimization, arxiv:0912.0746Google Scholar
  3. 3.
    Ambainis, A.: Quantum lower bounds by quantum arguments. Journal of Computer and System Sciences 64, 750–767 (2002), quant-ph/0002066zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Ambainis, A.: Quantum walks and their algorithmic applications. International Journal of Quantum Information 1, 507–518 (2003), quant-ph/0403120zbMATHCrossRefGoogle Scholar
  5. 5.
    Ambainis, A.: Quantum walk algorithm for element distinctness. SIAM Journal on Computing 37(1), 210–239 (2007), FOCS 2004 and quant-ph/0311001zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Ambainis, A.: Quantum search algorithms (a survey). SIGACT News 35(2), 22–35 (2004), quant-ph/0504012CrossRefGoogle Scholar
  7. 7.
    Ambainis, A.: Polynomial degree vs. quantum query complexity. Journal of Computer and System Sciences 72(2), 220–238 (2006), quant-ph/0305028zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Ambainis, A.: A nearly optimal discrete query quantum algorithm for evaluating NAND formulas, arxiv:0704.3628Google Scholar
  9. 9.
    Ambainis, A.: Quantum random walks - New method for designing quantum algorithms. In: Geffert, V., Karhumäki, J., Bertoni, A., Preneel, B., Návrat, P., Bieliková, M. (eds.) SOFSEM 2008. LNCS, vol. 4910, pp. 1–4. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Ambainis, A.: Quantum algorithms for formula evaluation. In: Proceedings of the NATO Advanced Research Workshop Quantum Cryptography and Computing: Theory and Implementations (to appear)Google Scholar
  11. 11.
    Ambainis, A.: Variable time amplitude amplification and a faster quantum algorithm for systems of linear equations (in preparation, 2010)Google Scholar
  12. 12.
    Ambainis, A., Childs, A., Reichardt, B., Spalek, R., Zhang, S.: Any AND-OR formula of size N can be evaluated in time N 1/2 + o(1) on a quantum computer. In: Proceedings of FOCS 2007, pp. 363–372 (2007)Google Scholar
  13. 13.
    Ambainis, A., Kempe, J., Rivosh, A.: Coins make quantum walks faster. In: Proceedings of SODA 2005, pp. 1099–1108 (2005), quant-ph/0402107Google Scholar
  14. 14.
    Barnum, H., Saks, M.: A lower bound on the quantum complexity of read once functions. Journal of Computer and System Sciences 69, 244–258 (2004), quant-ph/0201007zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Barnum, H., Saks, M.E., Szegedy, M.: Quantum query complexity and semi-definite programming. In: IEEE Conference on Computational Complexity 2003, pp. 179–193 (2003)Google Scholar
  16. 16.
    Berry, D.W., Ahokas, G., Cleve, R., Sanders, B.C.: Efficient quantum algorithms for simulating sparse Hamiltonians. Communications in Mathematical Physics 270(2), 359–371 (2007), quant-ph/0508139zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Berry, D.W., Childs, A.: The quantum query complexity of implementing black-box unitary transformations, arxiv:0910.4157Google Scholar
  18. 18.
    Boneh, D., Lipton, R.: Quantum cryptanalysis of hidden linear functions (extended abstract). In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 424–437. Springer, Heidelberg (1995)Google Scholar
  19. 19.
    Buhrman, H., Špalek, R.: Quantum verification of matrix products. In: Proceedings of SODA 2006, pp. 880–889 (2006), quant-ph/0409035Google Scholar
  20. 20.
    Buhrman, H., de Wolf, R.: Complexity measures and decision tree complexity: a survey. Theoretical Computer Science 288, 21–43 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Brassard, G., Høyer, P., Mosca, M., Tapp, A.: Quantum amplitude amplification and estimation. In: Quantum Computation and Quantum Information Science. AMS Contemporary Mathematics Series, vol. 305, pp. 53–74 (2002), quant-ph/0005055Google Scholar
  22. 22.
    Brassard, G., Høyer, P., Tapp, A.: Quantum cryptanalysis of hash and claw-free functions. In: Lucchesi, C.L., Moura, A.V. (eds.) LATIN 1998. LNCS, vol. 1380, pp. 163–169. Springer, Heidelberg (1998), quant-ph/9705002 CrossRefGoogle Scholar
  23. 23.
    Brassard, G., Høyer, P., Tapp, A.: Quantum counting. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 820–831. Springer, Heidelberg (1998), quant-ph/9805082CrossRefGoogle Scholar
  24. 24.
    Bunch, J.R., Hopcroft, J.E.: Triangular factorization and inversion by fast matrix multiplication. Mathematics of Computation 28, 231–236 (1974)zbMATHMathSciNetGoogle Scholar
  25. 25.
    Childs, A.: On the relationship between continuous- and discrete-time quantum walk. Communications in Mathematical Physics 294, 581–603 (2010), arXiv:0810.0312CrossRefMathSciNetGoogle Scholar
  26. 26.
    Childs, A.M., Cleve, R., Deotto, E., Farhi, E., Gutmann, S., Spielman, D.A.: Exponential algorithmic speedup by quantum walk. In: Proceedings of STOC 2003, pp. 59–68 (2003), quant-ph/0209131Google Scholar
  27. 27.
    Childs, A., Reichardt, B., Špalek, R., Zhang, S.: Every NAND formula on N variables can be evaluated in time O(N 1/2 + ε), quant-ph/0703015, version v1 (March 2, 2007)Google Scholar
  28. 28.
    Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progressions. Journal of Symbolic Computation 9(3), 251–280 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    van Dam, W., Mosca, M., Vazirani, U.: How Powerful is Adiabatic Quantum Computation? In: Proceedings of FOCS 2001, pp. 279–287 (2001)Google Scholar
  30. 30.
    D-Wave Systems, http://www.dwavesys.com
  31. 31.
    Farhi, E., Goldstone, J., Gutman, S., Sipser, M.: A quantum adiabatic algorithm applied to random instances of an NP-complete problem. Science 292, 472–476 (2001), quant-ph/0104129CrossRefMathSciNetGoogle Scholar
  32. 32.
    Farhi, E., Goldstone, J., Gutman, S.: A Quantum Algorithm for the Hamiltonian NAND Tree. Theory of Computing 4, 169–190 (2008), quant-ph/0702144CrossRefMathSciNetGoogle Scholar
  33. 33.
    Golub, G., van Loan, C.: Matrix Computations, 3rd edn. John Hopkins University Press, Baltimore (1996)zbMATHGoogle Scholar
  34. 34.
    Grover, L.: A fast quantum mechanical algorithm for database search. In: Proceedings of STOC 1996, pp. 212–219 (1996), quant-ph/9605043Google Scholar
  35. 35.
    Hallgren, S.: Polynomial-time quantum algorithms for Pell’s equation and the principal ideal problem. Journal of the ACM 54(1) (2007)Google Scholar
  36. 36.
    Harrow, A., Hassidim, A., Lloyd, S.: Quantum algorithm for linear systems of equations. Physical Review Letters 103, 150502 (2008), arXiv:0907.3920CrossRefMathSciNetGoogle Scholar
  37. 37.
    Horn, R., Johnson, C.: Matrix Analysis. Cambridge University Press, Cambridge (1985)zbMATHGoogle Scholar
  38. 38.
    Høyer, P., Lee, T., Špalek, R.: Negative weights make adversaries stronger. In: Proceedings of STOC 2007, pp. 526–535 (2007), quant-ph/0611054Google Scholar
  39. 39.
    Jozsa, R.: Quantum factoring, discrete logarithms, and the hidden subgroup problem. Computing in Science and Engineering 3, 34–43 (2001), quant-ph/0012084CrossRefGoogle Scholar
  40. 40.
    Karchmer, M., Wigderson, A.: On Span Programs. In: Structure in Complexity Theory Conference 1993, pp. 102–111 (1993)Google Scholar
  41. 41.
    Kempe, J.: Quantum random walks - an introductory overview. Contemporary Physics 44(4), 307–327 (2003), quant-ph/0303081CrossRefMathSciNetGoogle Scholar
  42. 42.
    Krovi, H., Magniez, F., Ozols, M., Roland, J.: Finding is as easy as detecting for quantum walks. In: Proceedings of ICALP (to appear, 2010), arxiv:1002.2419Google Scholar
  43. 43.
    Laplante, S., Magniez, F.: Lower Bounds for Randomized and Quantum Query Complexity Using Kolmogorov Arguments. SIAM Journal on Computing 38(1), 46–62 (2008), Also CCC 2004 and quant-ph/0311189zbMATHCrossRefMathSciNetGoogle Scholar
  44. 44.
    Magniez, F., Nayak, A., Roland, J., Santha, M.: Search via quantum walk. In: Proceedings of STOC 2007, pp. 575–584 (2007), quant-ph/0608026Google Scholar
  45. 45.
    Magniez, F., Santha, M., Szegedy, M.: Quantum algorithms for the triangle problem. SIAM Journal on Computing 37(2), 413–424 (2007), quant-ph/0310134zbMATHCrossRefMathSciNetGoogle Scholar
  46. 46.
    Mosca, M., Ekert, A.: The Hidden Subgroup Problem and Eigenvalue Estimation on a Quantum Computer. In: Williams, C.P. (ed.) QCQC 1998. LNCS, vol. 1509, pp. 174–188. Springer, Heidelberg (1999), quant-ph/9903071CrossRefGoogle Scholar
  47. 47.
    Nayak, A., Wu, F.: The quantum query complexity of approximating the median and related statistics. In: Proceedings of STOC 1999, pp. 384–393 (1999), quant-ph/9804066Google Scholar
  48. 48.
    Reichardt, B.: Span programs and quantum query complexity: The general adversary bound is nearly tight for every boolean function. In: Proceedings of FOCS (2009), arXiv:0904.2759Google Scholar
  49. 49.
    Reichardt, B.: Span-program-based quantum algorithm for evaluating unbalanced formulas, arXiv:09071622Google Scholar
  50. 50.
    Reichardt, B.: Faster quantum algorithm for evaluating game trees, arXiv:0907.1623Google Scholar
  51. 51.
    Reichardt, B.: Reflections for quantum query algorithms, arxiv:1005.1601Google Scholar
  52. 52.
    Reichardt, B., Špalek, R.: Span-program-based quantum algorithm for evaluating formulas. In: Proceedings of STOC 2008, pp. 103–112 (2008), arXiv:0710.2630Google Scholar
  53. 53.
    Saks, M., Wigderson, A.: Probabilistic Boolean decision trees and the complexity of evaluating game trees. In: Proceedings of FOCS 1986, pp. 29–38 (1986)Google Scholar
  54. 54.
    Santha, M.: Quantum walk based search algorithms. In: Agrawal, M., Du, D.-Z., Duan, Z., Li, A. (eds.) TAMC 2008. LNCS, vol. 4978, pp. 31–46. Springer, Heidelberg (2008), arXiv:0808.0059CrossRefGoogle Scholar
  55. 55.
    Shewchuk, J.: An introduction to the conjugate gradient method without the agonizing pain. Technical Report CMU-CS-94-125, School of Computer Science, Carnegie Mellon University (1994)Google Scholar
  56. 56.
    Shor, P.: Algorithms for Quantum Computation: Discrete Logarithms and Factoring. In: Proceedings of FOCS 1994, pp. 124–134 (1994), quant-ph/9508027 Google Scholar
  57. 57.
    Snir, M.: Lower bounds on probabilistic linear decision trees. Theoretical Computer Science 38, 69–82 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  58. 58.
    Szegedy, M.: Quantum speed-up of Markov chain based algorithms. In: Proceedings of FOCS 2004, pp. 32–41 (2004)Google Scholar
  59. 59.
    Tulsi, T.A.: Faster quantum walk algorithm for the two dimensional spatial search. Physical Review A 78, 012310 (2008), arXiv:0801.0497CrossRefGoogle Scholar
  60. 60.
    Venegas-Andrade, S.E.: Quantum Walks for Computer Scientists. Morgan and Claypool (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Andris Ambainis
    • 1
  1. 1.Faculty of ComputingUniversity of LatviaRigaLatvia

Personalised recommendations