A Privacy-Preserving Architecture for the Semantic Web Based on Tag Suppression

  • Javier Parra-Arnau
  • David Rebollo-Monedero
  • Jordi Forné
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6264)


We propose an architecture that preserves user privacy in the semantic Web via tag suppression. In tag suppression, users may wish to tag some resources and refrain from tagging some others in order to hinder privacy attackers in their efforts to profile users’ interests. Following this strategy, our architecture helps users decide which tags should be suppressed. We describe the implementation details of the proposed architecture and provide further insight into the modeling of profiles. In addition, we present a mathematical formulation of the optimal trade-off between privacy and tag suppression rate.


Policy Language Vector Space Model Privacy Preservation Privacy Risk Private Information Retrieval 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Scient. Amer. (May 2001)Google Scholar
  2. 2.
    Michlmayr, E., Cazer, S.: Learning user profiles from tagging data and leveraging them for personal(ized) information access. In: Proc. Workshop Tagging and Metadata for Social Inform. Org. Workshop in Int. WWW Conf. (2007)Google Scholar
  3. 3.
    John, A., Seligmann, D.: Collaborative tagging and expertise in the enterprise. In: Proc. Col. Web Tagging Workshop WWW (2006)Google Scholar
  4. 4.
    Gruber, T.R.: A translation approach to portable ontology specifications. Knowl. Acquisition 5(2), 199–220 (1993)CrossRefGoogle Scholar
  5. 5.
    Brickley, D., Guha, R.V.: RDF vocabulary description language 1.0: RDF schema. W3c recommendation, W3C (February 2004),
  6. 6.
    OWL Working Group, W.: OWL 2 Web Ontology Language: Document Overview. W3C Recommendation (October 27, 2009),
  7. 7.
    Mcdonald, A.M., Reeder, R.W., Kelley, P.G., Cranor, L.F.: A comparative study of online privacy policies and formats. In: Proc. Workshop Privacy Enhanc. Technol. (PET), pp. 37–55. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Jensen, C., Potts, C., Jensen, C.: Privacy practices of internet users: Self-reports versus observed behavior. Int. J. Human-Comput. Stud. 63(1-2), 203–227 (2005)CrossRefGoogle Scholar
  9. 9.
    Kagal, L., Finin, T., Joshi, A.: A policy based approach to security for the semantic web. In: Proc. Int. Semantic Web Conf., pp. 402–418 (2003)Google Scholar
  10. 10.
    Kagal, L., Paolucci, M., Srinivasan, N., Denker, G., Finin, T., Sycara, K.: Authorization and privacy for semantic web services. IEEE J. Intelligent Syst. 19(4), 50–56 (2004)CrossRefGoogle Scholar
  11. 11.
    Elovici, Y., Shapira, B., Maschiach, A.: A new privacy model for hiding group interests while accessing the web. In: Proc. ACM Workshop on Privacy in the Electron. Society, pp. 63–70. ACM, New York (2002)Google Scholar
  12. 12.
    Shapira, B., Elovici, Y., Meshiach, A., Kuflik, T.: PRAW – The model for PRivAte Web. J. Amer. Soc. Inform. Sci., Technol. 56(2), 159–172 (2005)CrossRefGoogle Scholar
  13. 13.
    Frakes, W.B., Baeza-Yates, R.A. (eds.): Information Retrieval: Data Structures & Algorithms. Prentice-Hall, Englewood Cliffs (1992)Google Scholar
  14. 14.
    Kuflik, T., Shapira, B., Elovici, Y., Maschiach, A.: Privacy preservation improvement by learning optimal profile generation rate. In: Brusilovsky, P., Corbett, A.T., de Rosis, F. (eds.) UM 2003. LNCS, vol. 2702, pp. 168–177. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  15. 15.
    Howe, D.C., Nissenbaum, H.: TrackMeNot (2006)Google Scholar
  16. 16.
    Toubiana, V.: SquiggleSR (2007)Google Scholar
  17. 17.
    Salton, G., Wong, A., Yang, C.S.: A vector space model for automatic indexing. ACM Commun. 18(11), 613–620 (1975)CrossRefzbMATHGoogle Scholar
  18. 18.
    Rebollo-Monedero, D., Forné, J., Domingo-Ferrer, J.: From t-closeness-like privacy to postrandomization via information theory. IEEE Trans. Knowl. Data Eng. (October 2009)Google Scholar
  19. 19.
    Cover, T.M., Thomas, J.A.: Elements of Information Theory, 2nd edn. Wiley, New York (2006)zbMATHGoogle Scholar
  20. 20.
    Jaynes, E.T.: On the rationale of maximum-entropy methods. Proc. IEEE 70(9), 939–952 (1982)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Javier Parra-Arnau
    • 1
  • David Rebollo-Monedero
    • 1
  • Jordi Forné
    • 1
  1. 1.Department of Telematics EngineeringTechnical University of Catalonia (UPC)BarcelonaSpain

Personalised recommendations