Ion Irradiation of High-Temperature Superconductors and Its Application for Nanopatterning

Chapter
Part of the NanoScience and Technology book series (NANO)

Abstract

Many of the cuprate high-temperature superconductors have transition temperatures well above the boiling point of liquid nitrogen and can be operated under technically viable cooling conditions. On the other hand, they have complex and sensitive crystallographic structures that impose severe restrictions for nano-patterning by the established methods. Ion irradiation of these materials offers a unique possibility to create a wide range of different defects and to tailor the electrical and superconducting properties. Depending on the species of ions used during the irradiation, their energy and fluence, nanoscale columnar pinning centres can be created that enhance the critical current, or randomly distributed point defects that change the superconducting properties. The various effects of ion bombardment on the structural and electrical properties of a representative high-temperature superconductor are reviewed with an emphasis on He+ irradiation with moderate energy and the prospects discussed to create nanostructures in thin films of these superconductors.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Van Duzer, C.W. Turner, Principles of Superconductive Devices and Circuits, 2nd edn. (Prentice Hall PTR, Upper Saddle River, NJ, 1999)Google Scholar
  2. 2.
    R. Wördenweber, High-T c Films: From Natural Defects to Nanostructure Engineering of Vortex Matter (this book)Google Scholar
  3. 3.
    J.T. Markert, Y. Dalichaouch, M.B. Maple, in Physical Properties of High Temperature Superconductors I, ed. by D. Ginsberg (World Scientific Publishing, Singapore, 1989), pp. 265–338Google Scholar
  4. 4.
    B. Roas, B. Hensel, G. Saemann-Ischenko, L. Schultz, Appl. Phys. Lett. 54, 1051 (1989)CrossRefADSGoogle Scholar
  5. 5.
    A. Pomar, Z. Konstantinovic, L. Martel, Z.Z. Li, H. Raffy, Phys. Rev. Lett. 85, 2809 (2000)CrossRefADSGoogle Scholar
  6. 6.
    J.Z. Wu, N. Yu, W.K. Chu, Phys. Rev. B 48, 9929 (1993)CrossRefADSGoogle Scholar
  7. 7.
    H.W. Weber, in Handbook of Superconducting Materials, vol. 1, ed. by D.A. Cardwell, D.S. Ginley (IOP Publishing, London, 2003), pp. 407–418Google Scholar
  8. 8.
    J. Giapintzakis, W.C. Lee, J.P. Rice, D.M. Ginsberg, I.M. Robertson, R. Wheeler, M.A. Kirk, M.O. Ruault, Phys. Rev. B 45, 10677 (1992)CrossRefADSGoogle Scholar
  9. 9.
    L. Civale, A.D. Marwick, M.W. McElfresh, T.K. Worthington, A.P. Malozemoff, F.H. Holtzberg, J.R. Thompson, M.A. Kirk, Phys. Rev. Lett. 65, 1164 (1990)CrossRefADSGoogle Scholar
  10. 10.
    L. Civale, A.D. Marwick, T.K. Worthington, M.A. Kirk, J.R. Thompson, L. Krusin-Elbaum, Y. Sun, J.R. Clem, F. Holtzberg, Phys. Rev. Lett. 67, 648 (1991)CrossRefADSGoogle Scholar
  11. 11.
    L. Krusin-Elbaum, J.R. Thompson, R. Wheeler, A.D. Marwick, C. Li, S. Patel, D.T. Shaw, P. Lisowski, D.T. Ullmann, Appl. Phys. Lett. 64, 3331 (1994)CrossRefADSGoogle Scholar
  12. 12.
    E.H. Brandt, Rep. Prog. Phys. 58, 1465 (1995)CrossRefADSGoogle Scholar
  13. 13.
    G. Blatter, V.B. Geshkenbein, in The Physics of Superconductors, vol. 1, ed. by K.H. Bennemann, J.B. Ketterson (Springer, Berlin, 2003), pp. 725–936Google Scholar
  14. 14.
    J.F. Ziegler, J.P. Biersack, U. Littmark, The Stopping and Range of Ions in Solids (Pergamon Press, New York, 1985). http://www.srim.orgGoogle Scholar
  15. 15.
    M.T. Robinson, MARLOWE Binary Collision Cascade Program Version 15b (2002)Google Scholar
  16. 16.
    M. Dineva-Stavreva, Monte-Carlo Simulation der Defekterzeugung durch Ionenstrahlen in Hochtemperatursupraleitern. Ph.D. Thesis, University of Vienna, (2005)Google Scholar
  17. 17.
    M. Marksteiner, Einfluss winkelabhängiger Ionenbestrahlung in Hochtemperatursupraleitern. Diploma Thesis, University of Vienna, (2006)Google Scholar
  18. 18.
    O. Meyer, T. Kroener, J. Remmel, J. Geerk, G. Linker, B. Strehlau, T. Wolf, Nucl. Instr. Meth. B65, 539 (1992)ADSGoogle Scholar
  19. 19.
    F. LeGoues, M. Ruault, G. Clark, H. Bernas, M. Gasgnier, Philos. Mag. A 60, 525 (1989)CrossRefADSGoogle Scholar
  20. 20.
    G. Clark, F. LeGoues, A. Marwick, R. Laibowitz, R.H. Koch, Appl. Phys. Lett. 51, 1462 (1987)CrossRefADSGoogle Scholar
  21. 21.
    G. Van Tendeloo, M.O. Ruault, H. Bernas, M. Gasgnier, J. Mater. Res. 6, 677 (1991)CrossRefADSGoogle Scholar
  22. 22.
    J.D. Jorgensen, P. Shiyou, P. Lightfoot, S. Hao, A.P. Paulikas, B.W. Veal, Physica C 167, 571 (1990)CrossRefADSGoogle Scholar
  23. 23.
    S. Matsui, H. Matsutera, T. Yoshitake, J. Fujita, T. Satoh, Nucl. Instr. Meth. B 39, 635 (1989)CrossRefADSGoogle Scholar
  24. 24.
    C.H. Chen, A.E. White, K.T. Short, R.C. Dynes, J.M. Poate, D.C. Jacobson, P.M. Mankiewich, W.J. Skocpol, R.E. Howard, Appl. Phys. Lett. 54, 1178 (1989)CrossRefADSGoogle Scholar
  25. 25.
    Z. Sefrioui, D. Arias, E.M. Gonzalez, C. Leon, J. Santamaria, J.L. Vicent, Phys. Rev. B 63, 064503/1 (2001)Google Scholar
  26. 26.
    W. Lang, T. Enzenhofer, M. Peruzzi, J.D. Pedarnig, D. Bäuerle, C. Horner, E. Cekan, E. Platzgummer, H. Loeschner, Inst. Phys. Conf. Ser. 181, 1549 (2004)Google Scholar
  27. 27.
    D. Bäuerle, Laser Processing and Chemistry, 3rd edn. (Springer, Berlin, 2000)Google Scholar
  28. 28.
    http://www.ims.co.atGoogle Scholar
  29. 29.
    Y. Iye, in Physical Properties of High Temperature Superconductors III, vol. 3, ed. by D.M. Ginsberg (World Scientific, Singapore, 1992), pp. 285–361Google Scholar
  30. 30.
    B. Wuyts, E. Osquiguil, M. Maenhoudt, S. Libbrecht, Z. Gao, Y. Bruynseraede, Phys. Rev. B 47, 5512 (1993)CrossRefADSGoogle Scholar
  31. 31.
    T. Enzenhofer, Eigenschaften von Hochtemperatur-Supraleitern nach Bestrahlung mit leichten Edelgasionen. Diploma Thesis, University of Vienna, (2003)Google Scholar
  32. 32.
    P.W. Anderson, Phys. Rev. Lett. 67, 2092 (1991)CrossRefADSGoogle Scholar
  33. 33.
    T.R. Chien, Z.Z. Wang, N.P. Ong, Phys. Rev. Lett. 67, 2088 (1991)CrossRefADSGoogle Scholar
  34. 34.
    B.W. Veal, W.K. Kwok, A. Umezawa, G.W. Crabtree, J.D. Jorgensen, J.W. Downey, L.J. Nowicki, A.W. Mitchell, A.P. Paulikas, C.H. Sowers, Appl. Phys. Lett. 51, 279 (1987)CrossRefADSGoogle Scholar
  35. 35.
    S.K. Tolpygo, J.Y. Lin, M. Gurvitch, S.Y. Hou, J.M. Phillips, Phys. Rev. B 53, 12454 (1996)CrossRefADSGoogle Scholar
  36. 36.
    S.K. Tolpygo, J.Y. Lin, M. Gurvitch, S.Y. Hou, J.M. Phillips, Phys. Rev. B 53, 12462 (1996)CrossRefADSGoogle Scholar
  37. 37.
    M.G. Blamire, D.J. Kang, G. Burnell, N.H. Peng, R. Webb, C. Jeynes, J.H. Yun, S.H. Moon, B. Oh, Vacuum 69, 11 (2003)CrossRefGoogle Scholar
  38. 38.
    J.C. Phillips, Rep. Prog. Phys. 59, 1133 (1996)CrossRefADSGoogle Scholar
  39. 39.
    F. Tafuri, J.R. Kirtley, Rep. Prog. Phys. 68, 2573 (2005)CrossRefADSGoogle Scholar
  40. 40.
    P. Chaudhari, J. Mannhart, D. Dimos, C.C. Tsuei, J. Chi, M.M. Oprysko, M. Scheuermann, Phys. Rev. Lett. 60, 1653 (1988)CrossRefADSGoogle Scholar
  41. 41.
    J. Gao, Y. Boguslavskij, B.B.G. Klopman, D. Terpstra, G.J. Gerritsma, H. Rogalla, Appl. Phys. Lett. 59, 2754 (1991)CrossRefADSGoogle Scholar
  42. 42.
    A.S. Katz, S.I. Woods, R.C. Dynes, J. Appl. Phys. 87, 2978 (2000)CrossRefADSGoogle Scholar
  43. 43.
    F. Kahlmann, A. Engelhardt, J. Schubert, W. Zander, C. Buchal, J. Hollkott, Appl. Phys. Lett. 73, 2354 (1998)CrossRefADSGoogle Scholar
  44. 44.
    D.J. Kang, G. Burnell, S.J. Lloyd, R.S. Speaks, N.H. Peng, C. Jeynes, R. Webb, J.H. Yun, S.H. Moon, B. Oh, E.J. Tarte, D.F. Moore, M.G. Blamire, Appl. Phys. Lett. 80, 814 (2002)CrossRefADSGoogle Scholar
  45. 45.
    N. Bergeal, X. Grison, J. Lesueur, G. Faini, M. Aprili, J.P. Contour, Appl. Phys. Lett. 87, 102502 (2005)CrossRefADSGoogle Scholar
  46. 46.
    W. Lang, H. Richter, M. Marksteiner, K. Siraj, M.A. Bodea, J.D. Pedarnig, C. Grigoropoulos, D. Bäuerle, C. Hasenfuss, L. Palmetshofer, R. Kolorova, P. Bauer, Int. J. Nanotechnol. 6, 704 (2009)CrossRefADSGoogle Scholar
  47. 47.
    J.D. Pedarnig, K. Siraj, M.A. Bodea, I. Puica, W. Lang, R. Kolarova, P. Bauer, K. Haselgrübler, C. Hasenfuss, I. Beinik, C. Teichert, Thin Solid Films 518, 7075 (2010)CrossRefADSGoogle Scholar
  48. 48.
    E. Platzgummer, C. Klein, P. Joechl, H. Loeschner, M. Witt, W. Pilz, J. Butschke, M. Jurisch, F. Letzkus, H. Sailer, M. Irmscher, Proc. SPIE 7488, 74881D (2009)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Faculty of Physics, Electronic Properties of MaterialsUniversity of ViennaWienAustria
  2. 2.Institute of Applied PhysicsJohannes Kepler UniversityLinzAustria

Personalised recommendations