Integrative Information Management for Systems Biology

  • Neil Swainston
  • Daniel Jameson
  • Peter Li
  • Irena Spasic
  • Pedro Mendes
  • Norman W. Paton
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6254)

Abstract

Systems biology develops mathematical models of biological systems that seek to explain, or better still predict, how the system behaves. In bottom-up systems biology, systematic quantitative experimentation is carried out to obtain the data required to parameterize models, which can then be analyzed and simulated. This paper describes an approach to integrated information management that supports bottom-up systems biology, with a view to automating, or at least minimizing the manual effort required during, creation of quantitative models from qualitative models and experimental data. Automating the process makes model construction more systematic, supports good practice at all stages in the pipeline, and allows timely integration of high throughput experimental results into models.

Keywords

computationalsystems biology workflow 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Herrgard, M.J., et al.: A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology. Nat. Biotechnol. 26(10), 1155–1160 (2008)CrossRefGoogle Scholar
  2. 2.
    Klipp, E., Herwig, R., Kowald, A., Wierling, C., Lehrach, H.: Systems Biology in practice. Wiley, Chichester (2005)CrossRefGoogle Scholar
  3. 3.
    Rojas, I., Golebiewski, M., Kania, R., Krebs, O., Mir, S., Weidemann, A., Wittig, U.: Storing and annotating of kinetic data. Silico Biol. 7 (suppl. 2), S37–S44 (2007)Google Scholar
  4. 4.
    Mendes, P., Hoops, S., Sahle, S., Gauges, R., Dada, J., Kummer, U.: Computational modeling of biochemical networks using COPASI. Methods Mol. Biol. 500, 17–59 (2009)Google Scholar
  5. 5.
    Rivers, J., Simpson, D.M., Robertson, D.H., Gaskell, S.J., Beynon, R.J.: Absolute multiplexed quantitative analysis of protein expression during muscle development using QconCAT. Mol. Cell. Proteomics 6(8), 1416–1427 (2007) (Epub May 17, 2007)Google Scholar
  6. 6.
    Spasic, I., et al.: MeMo: a hybrid SQL/XML approach to metabolomic data management for functional genomics. BMC Bioinformatics 7, 281 (2006)CrossRefGoogle Scholar
  7. 7.
    Jones, P., Côté, R.G., Martens, L., Quinn, A.F., Taylor, C.F., Derache, W., Hermjakob, H., Apweiler, R.: PRIDE: a public repository of protein and peptide identifications for the proteomics community. Nucleic Acids Res. 34, D659–D663 (2006)CrossRefGoogle Scholar
  8. 8.
    Oinn, T., et al.: Taverna: a tool for the composition and enactment of bioinformatics workflows. Bioinformatics 20, 3045–3054 (2004)CrossRefGoogle Scholar
  9. 9.
    Hucka, M., et al.: The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19(4), 524–531 (2003)CrossRefGoogle Scholar
  10. 10.
    Dada, J.O., Mendes, P.: Design and Architecture of Web Services for Simulation of Biochemical Systems. In: Paton, N.W., Missier, P., Hedeler, C. (eds.) DILS 2009. LNCS, vol. 5647, pp. 182–195. Springer, Heidelberg (2009)Google Scholar
  11. 11.
    Dada, J.O., Spasic, I., Paton, N.W., Mendes, P.: SBRML: a markup language for associating systems biology data with models. Bioinformatics (Feburary 21, 2010) (Epub ahead of print)Google Scholar
  12. 12.
    Siepen, J.A., et al.: An informatic pipeline for the data capture and submission of quantitative proteomic data using iTRAQTM. Proteome Sci. 5, 4 (2007)Google Scholar
  13. 13.
    Perkins, D.N., et al.: Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20(18), 3551–3567 (1999)CrossRefGoogle Scholar
  14. 14.
    Nilse, L., et al.: SILACAnalyzer - a tool for differential quantitation of stable isotope derived data. In: CIBB, 6th International Meeting on Computational Intelligence Methods for Bioinformatics and Biostatistics, Genoa (2009)Google Scholar
  15. 15.
    Garwood, K., et al.: Model-driven user interfaces for bioinformatics data resources: regenerating the wheel as an alternative to reinventing it. BMC Bioinformatics 7, 532 (2006)CrossRefGoogle Scholar
  16. 16.
    Swainston, N., et al.: Enzyme kinetics informatics: from instrument to browser. FEBS J. (submitted 2010)Google Scholar
  17. 17.
    Michaelis, L., Menten, M.L.: Die Kinetik der Invertinwirkung. Biochem. Z, 49, 333–369 (1913)Google Scholar
  18. 18.
    Jameson, D., et al.: Lightweight Experimental Data Management for Systems Biology (submitted 2010)Google Scholar
  19. 19.
    Degtyarenko, K., et al.: ChEBI: a database and ontology for chemical entities of biological interest. Nucleic Acids Res. 36, D344–D350 (2008)CrossRefGoogle Scholar
  20. 20.
    Issel-Tarver, L., et al.: Saccharomyces Genome Database. Methods Enzymol. 350, 329–346 (2002)CrossRefGoogle Scholar
  21. 21.
    Schneider, M., et al.: The UniProtKB/Swiss-Prot knowledgebase and its Plant Proteome Annotation Program. J. Proteomics 72, 567–573 (2009)CrossRefGoogle Scholar
  22. 22.
    Li, P., et al.: Automated manipulation of systems biology models using libSBML within Taverna workflows. Bioinformatics 24, 287–289 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Neil Swainston
    • 1
  • Daniel Jameson
    • 1
  • Peter Li
    • 1
  • Irena Spasic
    • 1
  • Pedro Mendes
    • 1
  • Norman W. Paton
    • 1
  1. 1.School of Computer ScienceUniversity of ManchesterManchesterUK

Personalised recommendations