Advertisement

A Graph-Based Clustering Scheme for Identifying Related Tags in Folksonomies

  • Symeon Papadopoulos
  • Yiannis Kompatsiaris
  • Athena Vakali
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6263)

Abstract

The paper presents a novel scheme for graph-based clustering with the goal of identifying groups of related tags in folksonomies. The proposed scheme searches for core sets, i.e. groups of nodes that are densely connected to each other by efficiently exploring the two-dimensional core parameter space, and successively expands the identified cores by maximizing a local subgraph quality measure. We evaluate this scheme on three real-world tag networks by assessing the relatedness of same-cluster tags and by using tag clusters for tag recommendation. In addition, we compare our results to the ones derived from a baseline graph-based clustering method and from a popular modularity maximization clustering method.

Keywords

graph-based clustering community detection folksonomies tag recommendation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mathes, A.: Folksonomies - Cooperative Classification and Communication Through Shared Metadata (2004), http://www.adammathes.com/academic/computer-mediated-communication/folksonomies.html
  2. 2.
    Vander Wal, T.: Folksonomy Coinage and Definition (2007), http://www.vanderwal.net/folksonomy.html
  3. 3.
    Mika, P.: Ontologies are us: A unified model of social networks and semantics. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 522–536. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Hotho, A., Jäschke, R., Schmitz, C., Stumme, G.: Information Retrieval in Folksonomies: Search and Ranking. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 411–426. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Begelman, G., Keller, P., Smadja, F.: Automated Tag Clustering: Improving search and exploration in the tag space (2006), http://www.pui.ch/phred/automated_tag_clustering
  6. 6.
    Simpson, E.: Clustering Tags in Enterprise and Web Folksonomies. Technical Report HPL-2008-18 (2008)Google Scholar
  7. 7.
    Au Yeung, C.M., Gibbins, N., Shadbolt, N.: Contextualising Tags in Collaborative Tagging Systems. In: Proceedings of 20th ACM Conference on Hypertext and Hypermedia, Turin, Italy, June 29-July 1, pp. 251–260. ACM, New York (2009)CrossRefGoogle Scholar
  8. 8.
    Brooks, C.H., Montanez, N.: Improved annotation of the blogosphere via autotagging and hierarchical clustering. In: Proceedings of WWW 2006: 15th International Conference on World Wide Web, pp. 625–632. ACM, New York (2006)Google Scholar
  9. 9.
    Gemmell, J., Shepitsen, A., Mobasher, B., Burke, R.: Personalizing Navigation in Folksonomies Using Hierarchical Tag Clustering. In: Song, I.-Y., Eder, J., Nguyen, T.M. (eds.) DaWaK 2008. LNCS, vol. 5182, pp. 196–205. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Giannakidou, E., Koutsonikola, V.A., Vakali, A., Kompatsiaris, Y.: Co-Clustering Tags and Social Data Sources. In: Proceedings of WAIM 2008: 9th International Conference on Web-Age Information Management, pp. 317–324. IEEE, Los Alamitos (2008)Google Scholar
  11. 11.
    Java, A., Joshi, A., Finin, T.: Detecting Commmunities via Simultaneous Clustering of Graphs and Folksonomies. In: Proceedings of WebKDD 2008: KDD Workshop on Web Mining and Web Usage Analysis (2008)Google Scholar
  12. 12.
    Sigurbjörnsson, B., van Zwol, R.: Flickr tag recommendation based on collective knowledge. In: Proceedings of WWW 2008: 17th International Conference on World Wide Web, pp. 327–336. ACM, New York (2008)Google Scholar
  13. 13.
    Li, X., Snoek, C.G.M., Worring, M.: Learning Social Tag Relevance by Neighbor Voting. IEEE Transactions on Multimedia 11(7), 1310–1322 (2009)CrossRefGoogle Scholar
  14. 14.
    Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks. Physical Review E 69, 026113 (2004)CrossRefGoogle Scholar
  15. 15.
    Xu, X., Yuruk, N., Feng, Z., Schweiger, T.A.: SCAN: A Structural Clustering Algorithm for Networks. In: Proceedings of KDD 2007: 13th International Conference on Knowledge Discovery and Data Mining, pp. 824–833. ACM, New York (2007)Google Scholar
  16. 16.
    Luo, F., Wang, J.Z., Promislow, E.: Exploring Local Community Structures in Large Networks. In: Proceedings of the 2006 IEEE/WIC/ACM International Conference on Web Intelligence, pp. 233–239. IEEE Computer Society, Los Alamitos (2006)Google Scholar
  17. 17.
    Papadopoulos, S., Kompatsiaris, Y., Vakali, A.: Leveraging Collective Intelligence through Community Detection in Tag Networks. In: Proceedings of CKCaR 2009 Workshop in K-CAP 2009 Conference, Redondo Beach, California, USA (2009)Google Scholar
  18. 18.
    Clauset, A., Newman, M.E.J., Moore, C.: Finding community structure in very large networks. Physical Review E 70, 066111 (2004)CrossRefGoogle Scholar
  19. 19.
    Wetzker, R., Zimmermann, C., Bauckhage, C.: Analyzing social bookmarking systems: A del.icio.us cookbook. In: Proceedings of ECAI 2008 Workshop on Mining Social Data (MSoDa), Patras, Greece, pp. 26–30 (July 2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Symeon Papadopoulos
    • 1
    • 2
  • Yiannis Kompatsiaris
    • 1
  • Athena Vakali
    • 2
  1. 1.Informatics and Telematics Institute, CERTHThessalonikiGreece
  2. 2.Department of InformaticsAristotle UniversityThessalonikiGreece

Personalised recommendations