Speeding Up Queries in Column Stores

A Case for Compression
  • Christian Lemke
  • Kai-Uwe Sattler
  • Franz Faerber
  • Alexander Zeier
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6263)

Abstract

BI accelerator solutions like the SAP NetWeaver database engine TREX achieve high performance when processing complex analytic queries in large data warehouses. They do so with a combination of column-oriented data organization, memory-based processing, and a scalable multiserver architecture. The use of data compression techniques further reduces both memory consumption and processing time. In this paper we study query operators like scan and aggregation on compressed data structures implemented in TREX.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abadi, D.J., Madden, S.R., Ferreira, M.C.: Integrating compression and execution in column-oriented database systems. In: Proc. SIGMOD, pp. 671–682 (2006)Google Scholar
  2. 2.
    Chen, Z., Gehrke, J., Korn, F.: Query optimization in compressed database systems. In: Proc. SIGMOD, pp. 271–282 (2001)Google Scholar
  3. 3.
    Cockshott, W.P., McGregor, D., Wilson, J.: High-performance operations using a compressed database architecture. The Computer Journal 41(5), 283–296 (1998)CrossRefMATHGoogle Scholar
  4. 4.
    Graefe, G., Shapiro, L.D.: Data compression and database performance. In: Proc. ACM/IEEE-CS Symp. on Applied Computing, pp. 22–27 (1991)Google Scholar
  5. 5.
    Li, J., Srivastava, J.: Efficient aggregation algorithms for compressed data warehouses. IEEE TKDE 14(3), 515–529 (2002)Google Scholar
  6. 6.
    O’Connell, S.J., Winterbottom, N.: Performing joins without decompression in a compressed database system. SIGMOD Rec. 32(1), 6–11 (2003)CrossRefGoogle Scholar
  7. 7.
    Raman, V., Swart, G.: How to wring a table dry: Entropy compression of relations and querying of compressed relations. In: Proc. 32nd VLDB, pp. 858–869 (2006)Google Scholar
  8. 8.
    Raman, V., Swart, G., Qiao, L., Reiss, F., Dialani, V., Kossmann, D., Narang, I., Sidle, R.: Constant-time query processing. In: Proc. 24th ICDE, pp. 60–69 (2008)Google Scholar
  9. 9.
    Stonebraker, M., et al.: C-store: A column-oriented dbms. In: Proc. 31st VLDB, pp. 553–564 (2005)Google Scholar
  10. 10.
    Westmann, T., Kossmann, D., Helmer, S., Moerkotte, G.: The implementation and performance of compressed databases. SIGMOD Rec. 29(3), 55–67 (2000)CrossRefGoogle Scholar
  11. 11.
    Willhalm, T., Popovici, N., Boshmaf, Y., Plattner, H., Zeier, A., Schaffner, J.: Simd-scan: Ultra fast in-memory table scan using on-chip vector processing units. PVLDB 2(1), 385–394 (2009)Google Scholar
  12. 12.
    Zhou, J., Ross, K.A.: Implementing database operations using simd instructions. In: Proc. SIGMOD, pp. 145–156 (2002)Google Scholar
  13. 13.
    Zukowski, M., Héman, S., Nes, N., Boncz, P.: Super-scalar ram-cpu cache compression. In: Proc. 22nd ICDE, p. 59 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Christian Lemke
    • 1
    • 2
  • Kai-Uwe Sattler
    • 2
  • Franz Faerber
    • 1
  • Alexander Zeier
    • 3
  1. 1.SAP AGWalldorfGermany
  2. 2.Ilmenau Univ. of TechnologyIlmenauGermany
  3. 3.Hasso-Plattner-InstitutePotsdamGermany

Personalised recommendations